You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.
The three-volume set LNCS 13042, LNCS 13043 and LNCS 13044 constitutes the refereed proceedings of the 19th International Conference on Theory of Cryptography, TCC 2021, held in Raleigh, NC, USA, in November 2021. The total of 66 full papers presented in this three-volume set was carefully reviewed and selected from 161 submissions. They cover topics on proof systems, attribute-based and functional encryption, obfuscation, key management and secure communication.
This book constitutes the refereed proceedings of the Third Theory of Cryptography Conference, TCC 2006, held in March 2006. The 31 revised full papers presented were carefully reviewed and selected from 91 submissions. The papers are organized in topical sections on zero-knowledge, primitives, assumptions and models, the bounded-retrieval model, privacy, secret sharing and multi-party computation, universally-composible security, one-way functions and friends, and pseudo-random functions and encryption.
This book constitutes the thoroughly refereed proceedings of the 9th Theory of Cryptography Conference, TCC 2012, held in Taormina, Sicily, Italy, in March 2012. The 36 revised full papers presented were carefully reviewed and selected from 131 submissions. The papers are organized in topical sections on secure computation; (blind) signatures and threshold encryption; zero-knowledge and security models; leakage-resilience; hash functions; differential privacy; pseudorandomness; dedicated encryption; security amplification; resettable and parallel zero knowledge.
TCC 2009, the 6th Theory of Cryptography Conference, was held in San Fr- cisco, CA, USA, March 15β17, 2009. TCC 2009 was sponsored by the Inter- tional Association for Cryptologic Research (IACR) and was organized in - operation with the Applied Crypto Group at Stanford University. The General Chair of the conference was Dan Boneh. The conference received 109 submissions, of which the Program Comm- tee selected 33 for presentation at the conference. These proceedings consist of revised versions of those 33 papers. The revisions were not reviewed, and the authors bear full responsibility for the contents of their papers. The conference program also included two invited talks: βThe Di?eren...
The three volumes LNCS 10820, 10821, and 10822 constitute the thoroughly refereed proceedings of the 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2018, held in Tel Aviv, Israel, in April/May 2018. The 69 full papers presented were carefully reviewed and selected from 294 submissions. The papers are organized into the following topical sections: foundations; lattices; random oracle model; fully homomorphic encryption; permutations; galois counter mode; attribute-based encryption; secret sharing; blockchain; multi-collision resistance; signatures; private simultaneous messages; masking; theoretical multiparty computation; obfuscation; symmetric cryptanalysis; zero-knowledge; implementing multiparty computation; non-interactive zero-knowledge; anonymous communication; isogeny; leakage; key exchange; quantum; non-malleable codes; and provable symmetric cyptography.
The two-volume set LNCS 9014 and LNCS 9015 constitutes the refereed proceedings of the 12th International Conference on Theory of Cryptography, TCC 2015, held in Warsaw, Poland in March 2015. The 52 revised full papers presented were carefully reviewed and selected from 137 submissions. The papers are organized in topical sections on foundations, symmetric key, multiparty computation, concurrent and resettable security, non-malleable codes and tampering, privacy amplification, encryption an key exchange, pseudorandom functions and applications, proofs and verifiable computation, differential privacy, functional encryption, obfuscation.
This book constitutes the thoroughly refereed proceedings of the 8th Theory of Cryptography Conference, TCC 2011, held in Providence, Rhode Island, USA, in March 2011. The 35 revised full papers are presented together with 2 invited talks and were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on hardness amplification, leakage resilience, tamper resilience, encryption, composable security, secure computation, privacy, coin tossing and pseudorandomness, black-box constructions and separations, and black box separations.
Cryptography is concerned with the conceptualization, definition and construction of computing systems that address security concerns. The design of cryptographic systems must be based on firm foundations. Foundations of Cryptography presents a rigorous and systematic treatment of foundational issues, defining cryptographic tasks and solving cryptographic problems. The emphasis is on the clarification of fundamental concepts and on demonstrating the feasibility of solving several central cryptographic problems, as opposed to describing ad-hoc approaches. This second volume contains a thorough treatment of three basic applications: Encryption, Signatures, and General Cryptographic Protocols. It builds on the previous volume, which provided a treatment of one-way functions, pseudorandomness, and zero-knowledge proofs. It is suitable for use in a graduate course on cryptography and as a reference book for experts. The author assumes basic familiarity with the design and analysis of algorithms; some knowledge of complexity theory and probability is also useful.