You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur ...
"On May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute announced the creation of a US$7 million prize fund for the solution of seven important classic problems that have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize problems gives the official description of each of the seven problems and the rules governing the prizes"--Information screen.
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves ins...
The work of Alain Connes has cut a wide swath across several areas of mathematics and physics. Reflecting its broad spectrum and profound impact on the contemporary mathematical landscape, this collection of articles covers a wealth of topics at the forefront of research in operator algebras, analysis, noncommutative geometry, topology, number theory and physics. Specific themes covered by the articles are as follows: entropy in operator algebras, regular $C^*$-algebras of integral domains, properly infinite $C^*$-algebras, representations of free groups and 1-cohomology, Leibniz seminorms and quantum metric spaces; von Neumann algebras, fundamental Group of $\mathrm{II}_1$ factors, subfacto...
This is the first volume of the lectures presented at the Clay Mathematics Institute 2014 Summer School, ``Periods and Motives: Feynman amplitudes in the 21st century'', which took place at the Instituto de Ciencias Matematicas-ICMAT (Institute of Mathematical Sciences) in Madrid, Spain. It covers the presentations by S. Bloch, by M. Marcolli and by L. Kindler and K. Rulling. The main topics of these lectures are Feynman integrals and ramification theory. On the Feynman integrals side, their relation with Hodge structures and heights as well as their monodromy are explained in Bloch's lectures. Two constructions of Feynman integrals on configuration spaces are presented in Ceyhan and Marcolli's notes. On the ramification theory side an introduction to the theory of $l$-adic sheaves with emphasis on their ramification theory is given. These notes will equip the reader with the necessary background knowledge to read current literature on these subjects.
Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.
Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.
This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering ...
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.