You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Many problems in celestial mechanics, physics and engineering involve the study of oscillating systems governed by nonlinear ordinary differential equations or partial differential equations. This volume represents an important contribution to the available methods of solution for such systems. The contents are divided into six chapters. Chapter 1 presents a study of periodic solutions for nonlinear systems of evolution equations including differential equations with lag, systems of neutral type, various classes of nonlinear systems of integro-differential equations, etc. A numerical-analytic method for the investigation of periodic solutions of these evolution equations is presented. In Cha...
This monograph is devoted to the solution of various problems in the theory of differential equations in the space "M" of bounded numerical sequences (called countable systems). In particular, the general theory of countable systems, the theory of oscillating solutions, and the theory of countable systems with pulse action are treated. Main attention is given to generalization of the results of numerous authors, obtained in recent years for finite-dimensional systems of different equations to the case of systems from the analysed class. The book contains the following four chapters: - General concepts of the theory of infinite systems of differential equations - Invariant tori - Reducibility of linear systems - Impulsive systems This book will be of value and interest to anyone working in this field of differential equations.
In contrast to other books devoted to the averaging method and the method of integral manifolds, in the present book we study oscillation systems with many varying frequencies. In the process of evolution, systems of this type can pass from one resonance state into another. This fact considerably complicates the investigation of nonlinear oscillations. In the present monograph, a new approach based on exact uniform estimates of oscillation integrals is proposed. On the basis of this approach, numerous completely new results on the justification of the averaging method and its applications are obtained and the integral manifolds of resonance oscillation systems are studied. This book is intended for a wide circle of research workers, experts, and engineers interested in oscillation processes, as well as for students and post-graduate students specialized in ordinary differential equations.
Significant interest in the investigation of systems with discontinuous trajectories is explained by the development of equipment in which significant role is played by impulsive control systems and impulsive computing systems. Impulsive systems are also encountered in numerous problems of natural sciences described by mathematical models with conditions reflecting the impulsive action of external forces with pulses whose duration can be neglected. Differential equations with set-valued right-hand side arise in the investigation of evolution processes in the case of measurement errors, inaccuracy or incompleteness of information, action of bounded perturbations, violation of unique solvabili...
Evolutionary equations are studied in abstract Banach spaces and in spaces of bounded number sequences. For linear and nonlinear difference equations, which are defined on finite-dimensional and infinite-dimensional tori, the problem of reducibility is solved, in particular, in neighborhoods of their invariant sets, and the basics for a theory of invariant tori and bounded semi-invariant manifolds are established. Also considered are the questions on existence and approximate construction of periodic solutions for difference equations in infinite-dimensional spaces and the problem of extendibility of the solutions in degenerate cases. For nonlinear differential equations in spaces of bounded number sequences, new results are obtained in the theory of countable-point boundary-value problems.The book contains new mathematical results that will be useful towards advances in nonlinear mechanics and theoretical physics.
Contents:General Description of Impulsive Differential SystemsLinear SystemsStability of SolutionsPeriodic and Almost Periodic Impulsive SystemsIntegral Sets of Impulsive SystemsOptimum Control in Impulsive SystemsAsymptotic Study of Oscillations in Impulsive SystemsA Periodic and Almost Periodic Impulsive SystemsBibliographySubject Index Readership: Researchers in nonlinear science. keywords:Differential Equations with Impulses;Linear Systems;Stability;Periodic and Quasi-Periodic Solutions;Integral Sets;Optimal Control “… lucid … the book … will benefit all who are interested in IDE…” Mathematics Abstracts
This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory — namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs.The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari-Hale and Lyapunov-Schmidt methods.
The book covers fundamentals of the theory of optimal methods for solving ill-posed problems, as well as ways to obtain accurate and accurate-by-order error estimates for these methods. The methods described in the current book are used to solve a number of inverse problems in mathematical physics. Contents Modulus of continuity of the inverse operator and methods for solving ill-posed problems Lavrent’ev methods for constructing approximate solutions of linear operator equations of the first kind Tikhonov regularization method Projection-regularization method Inverse heat exchange problems