You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant ...
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant ...
In the last 20 years the disciplines of particle physics, astrophysics, nuclear physics and cosmology have grown together in an unprecedented way. A brilliant example is nuclear double beta decay, an extremely rare radioactive decay mode, which is one of the most exciting and important fields of research in particle physics at present and the flagship of non-accelerator particle physics.While already discussed in the 1930s, only in the 1980s was it understood that neutrinoless double beta decay can yield information on the Majorana mass of the neutrino, which has an impact on the structure of space-time. Today, double beta decay is indispensable for solving the problem of the neutrino mass s...