Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

A Comprehensive Introduction to Sub-Riemannian Geometry
  • Language: en
  • Pages: 765

A Comprehensive Introduction to Sub-Riemannian Geometry

Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually can reach every position from any other. In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and Lie theory. This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines.

Control Theory from the Geometric Viewpoint
  • Language: en
  • Pages: 440

Control Theory from the Geometric Viewpoint

This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.

A Comprehensive Introduction to Sub-Riemannian Geometry
  • Language: en
  • Pages: 765

A Comprehensive Introduction to Sub-Riemannian Geometry

Provides a comprehensive and self-contained introduction to sub-Riemannian geometry and its applications. For graduate students and researchers.

Nonlinear and Optimal Control Theory
  • Language: en
  • Pages: 368

Nonlinear and Optimal Control Theory

  • Type: Book
  • -
  • Published: 2008-06-24
  • -
  • Publisher: Springer

The lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.

A First Course in Differential Geometry
  • Language: en
  • Pages: 275

A First Course in Differential Geometry

With detailed explanations and numerous examples, this textbook covers the differential geometry of surfaces in Euclidean space.

Differential Geometry and Control
  • Language: en
  • Pages: 354

Differential Geometry and Control

Contains papers from a summer 1997 meeting on recent developments and important open problems in geometric control theory. Topics include linear control systems in Lie groups and controllability, real analytic geometry and local observability, singular extremals of order 3 and chattering, infinite time horizon stochastic control problems in hyperbolic three space, and Monge-Ampere equations. No index. Annotation copyrighted by Book News, Inc., Portland, OR.

Geometric Control Theory
  • Language: en
  • Pages: 516

Geometric Control Theory

Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.

Hamiltonian Dynamical Systems and Applications
  • Language: en
  • Pages: 450

Hamiltonian Dynamical Systems and Applications

This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems. Applications are also presented to several important areas of research, including problems in classical mechanics, continuum mechanics, and partial differential equations.

Elements of Neurogeometry
  • Language: en
  • Pages: 388

Elements of Neurogeometry

  • Type: Book
  • -
  • Published: 2017-11-08
  • -
  • Publisher: Springer

This book describes several mathematical models of the primary visual cortex, referring them to a vast ensemble of experimental data and putting forward an original geometrical model for its functional architecture, that is, the highly specific organization of its neural connections. The book spells out the geometrical algorithms implemented by this functional architecture, or put another way, the “neurogeometry” immanent in visual perception. Focusing on the neural origins of our spatial representations, it demonstrates three things: firstly, the way the visual neurons filter the optical signal is closely related to a wavelet analysis; secondly, the contact structure of the 1-jets of th...

Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning
  • Language: en
  • Pages: 112

Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning

  • Type: Book
  • -
  • Published: 2014-07-17
  • -
  • Publisher: Springer

Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.