You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Addresses the theoretical and experimental phenomenology of particle physics for two-semester Masters and graduate courses.
The scientific program of these important proceedings was arranged to cover most of the field of neutrino physics. In light of the rapid growth of interest stimulated by new interesting results from the field, more than half of the papers presented here are related to the neutrino mass and oscillations, including atmospheric and solar neutrino studies. Neutrino mass and oscillations could imply the existence of a mass scale many orders of magnitudes higher than presented in current physics and will probably guide scientists beyond the standard model of particle physics.
The International Conference on Calorimetry in Particle Physics is the major and most comprehensive forum for discussion on state-of-the-art developments of calorimetry technologies. The Eleventh Conference covered all aspects of calorimetric detection and measurements, with emphasis on high energy physics and astrophysics experiments. Besides the usual discussion on calorimetry technologies this edition is enriched by the presence of two sections dedicated to new techniques for calorimetry and applications to calorimetry for the next Linear Collider experiments.
These proceedings are devoted to a wide variety of items, both in theory and experiment, of particle physics such as neutrino and astroparticle physics, tests of the standard model and beyond, and hadron physics. Also covered are gravitation and cosmology, and physics from present and future accelerators.
High Energy Physics 99 contains the 18 invited plenary presentations and 250 contributions to parallel sessions presented at the International Europhysics Conference on High Energy Physics. The book provides a comprehensive survey of the latest developments in high energy physics. Topics discussed include hard high energy, structure functions, soft interactions, heavy flavor, the standard model, hadron spectroscopy, neutrino masses, particle astrophysics, field theory, and detector development.
The study of neutrinos and their interaction with matter has made many important contributions to our present knowledge of physics. This advanced text introduces neutrino physics and presents a theoretical framework for describing relativistic particles. It gives a pedagogical description of the neutrino, its properties, the standard model of electroweak interactions, and neutrino scattering from leptons and nucleons. Focusing on the role of nuclear effects, the discussion extends to various processes of quasielastic, inelastic, and deep inelastic scattering from nucleons and nuclei. Neutrino sources, detection and oscillation, along with the role of neutrinos in astrophysics and motivation for the need of physics beyond the standard model are discussed in detail. This topical book will stimulate new ideas and avenues for research, and will form a valuable resource for advanced students and researchers working in the field of neutrino physics.
This volume is the latest in a prominent biannual series of scientific meetings on the exciting research topics of dark matter and, more recently, of dark energy. It contains a state-of-the-art update on detection efforts by experimental groups around the world trying to pin down exotic new forms of matter under the names of axions, neutralinos, wimps, primordial black holes, q balls, sterile neutrinos, as well as a tantalizing new form of dark energy component called phantom energy and quintessence. The book is self-contained as it also includes general reviews on recent cosmological observations OCo supernovae measurements, cosmic matter distribution surveys and cosmic radiation anisotropies OCo introducing even the uninitiated reader to this fascinating frontier of research."
This textbook brings together nuclear and particle physics, balancing theoretical and experimental perspectives for graduates and upper undergraduates.
This conference celebrated the discovery of neutral currents in neutrino interactions twenty years ago. History will mark the 1973 decisive experiments as the turning point of a new era in theoretical and experimental physics. The participants in the discovery retrace its circumstances and genesis, and all the present aspects of its heritage are reviewed: particle physics (the standard model has to date not been invalidated by the most precise experiments at LEP), atomic physics and astrophysics.
An easily accessible introduction to quantum field theory via Feynman rules in particle physics.