You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
Assuming only modest knowledge of undergraduate level math, Invitation to the Mathematics of Fermat-Wiles presents diverse concepts required to comprehend Wiles' extraordinary proof. Furthermore, it places these concepts in their historical context. This book can be used in introduction to mathematics theories courses and in special topics courses on Fermat's last theorem. It contains themes suitable for development by students as an introduction to personal research as well as numerous exercises and problems. However, the book will also appeal to the inquiring and mathematically informed reader intrigued by the unraveling of this fascinating puzzle. Rigorously presents the concepts required to understand Wiles' proof, assuming only modest undergraduate level math Sets the math in its historical context Contains several themes that could be further developed by student research and numerous exercises and problems Written by Yves Hellegouarch, who himself made an important contribution to the proof of Fermat's last theorem
Tavistock Press was established as a co-operative venture between the Tavistock Institute and Routledge & Kegan Paul (RKP) in the 1950s to produce a series of major contributions across the social sciences. This volume is part of a 2001 reissue of a selection of those important works which have since gone out of print, or are difficult to locate. Published by Routledge, 112 volumes in total are being brought together under the name The International Behavioural and Social Sciences Library: Classics from the Tavistock Press. Reproduced here in facsimile, this volume was originally published in 1980 and is available individually. The collection is also available in a number of themed mini-sets of between 5 and 13 volumes, or as a complete collection.
None
None
A wide-ranging exploration of how music has influenced science through the ages, from fifteenth-century cosmology to twentieth-century string theory. In the natural science of ancient Greece, music formed the meeting place between numbers and perception; for the next two millennia, Pesic tells us in Music and the Making of Modern Science, “liberal education” connected music with arithmetic, geometry, and astronomy within a fourfold study, the quadrivium. Peter Pesic argues provocatively that music has had a formative effect on the development of modern science—that music has been not just a charming accompaniment to thought but a conceptual force in its own right. Pesic explores a seri...
None
The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...