You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Langlands Program summarizes those parts of mathematical research belonging to the representation theory of reductive groups and to class field theory. These two topics are connected by the vision that, roughly speaking, the irreducible representations of the general linear group may well serve as parameters for the description of all number fields. In the local case, the base field is a given $p$-adic field $K$ and the extension theory of $K$ is seen as determined by the irreducible representations of the absolute Galois group $G_K$ of $K$. Great progress has been made in establishing correspondence between the supercuspidal representations of $GL(n,K)$ and those irreducible representat...
This book presents results on the case of the Ramsey problem for the uncountable: When does a partition of a square of an uncountable set have an uncountable homogeneous set? This problem most frequently appears in areas of general topology, measure theory, and functional analysis. Building on his solution of one of the two most basic partition problems in general topology, the ``S-space problem,'' the author has unified most of the existing results on the subject and made many improvements and simplifications. The first eight sections of the book require basic knowldege of naive set theory at the level of a first year graduate or advanced undergraduate student. The book may also be of interest to the exclusively set-theoretic reader, for it provides an excellent introduction to the subject of forcing axioms of set theory, such as Martin's axiom and the Proper forcing axiom.
This volume is a collection of papers presented at a special session on integrable systems and Riemann-Hilbert problems. The goal of the meeting was to foster new research by bringing together experts from different areas. Their contributions to the volume provide a useful portrait of the breadth and depth of integrable systems. Topics covered include discrete Painleve equations, integrable nonlinear partial differential equations, random matrix theory, Bose-Einstein condensation, spectral and inverse spectral theory, and last passage percolation models. In most of these articles, the Riemann-Hilbert problem approach plays a central role, which is powerful both analytically and algebraically. The book is intended for graduate students and researchers interested in integrable systems and its applications.
This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and s...
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
This volume contains the proceedings of the AMS Special Session on Invariant Theory, held in Denton, Texas in the fall of 1986; also included are several invited papers in this area. The purpose of the conference was to exchange ideas on recent developments in algebraic group actions on algebraic varieties. The papers fall into three main categories: actions of linear algebraic groups; flag manifolds and invariant theory; and representation theory and invariant theory. This book is likely to find a wide audience, for invariant theory is connected to a range of mathematical fields, such as algebraic groups, algebraic geometry, commutative algebra, and representation theory.
This book is a collection of three introductory tutorials coming out of three courses given at the CIMPA Research School “Galois Theory of Difference Equations” in Santa Marta, Columbia, July 23–August 1, 2012. The aim of these tutorials is to introduce the reader to three Galois theories of linear difference equations and their interrelations. Each of the three articles addresses a different galoisian aspect of linear difference equations. The authors motivate and give elementary examples of the basic ideas and techniques, providing the reader with an entry to current research. In addition each article contains an extensive bibliography that includes recent papers; the authors have provided pointers to these articles allowing the interested reader to explore further.
This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjec...
Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction the...
Arithmetic Noncommutative Geometry uses ideas and tools from noncommutative geometry to address questions in a new way and to reinterpret results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at Archimedean places of arithmetic surfaces and varieties. Noncommutative geometry can be expected to say something about topics of arithmetic interest because it provides the right framework for which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry. With a foreword written by Yuri Manin and a brief introduction to noncommutative geometry, this book offers a comprehensive account of the cross fertilization between two important areas, noncommutative geometry and number theory. It is suitable for graduate students and researchers interested in these areas.