Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Natural Language Processing for Social Media, Second Edition
  • Language: en
  • Pages: 188

Natural Language Processing for Social Media, Second Edition

In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods i...

Natural Language Processing for Social Media
  • Language: en
  • Pages: 221

Natural Language Processing for Social Media

In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Researc...

Natural Language Processing for Social Media, Third Edition
  • Language: en
  • Pages: 211

Natural Language Processing for Social Media, Third Edition

In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Researc...

Transforming Healthcare with Big Data and AI
  • Language: en
  • Pages: 184

Transforming Healthcare with Big Data and AI

  • Type: Book
  • -
  • Published: 2020-04-01
  • -
  • Publisher: IAP

Healthcare and technology are at a convergence point where significant changes are poised to take place. The vast and complex requirements of medical record keeping, coupled with stringent patient privacy laws, create an incredibly unwieldy maze of health data needs. While the past decade has seen giant leaps in AI, machine learning, wearable technologies, and data mining capacities that have enabled quantities of data to be accumulated, processed, and shared around the globe. Transforming Healthcare with Big Data and AI examines the crossroads of these two fields and looks to the future of leveraging advanced technologies and developing data ecosystems to the healthcare field. This book is ...

Validity, Reliability, and Significance
  • Language: en
  • Pages: 159

Validity, Reliability, and Significance

Empirical methods are means to answering methodological questions of empirical sciences by statistical techniques. The methodological questions addressed in this book include the problems of validity, reliability, and significance. In the case of machine learning, these correspond to the questions of whether a model predicts what it purports to predict, whether a model's performance is consistent across replications, and whether a performance difference between two models is due to chance, respectively. The goal of this book is to answer these questions by concrete statistical tests that can be applied to assess validity, reliability, and significance of data annotation and machine learning ...

Gazelle in New York
  • Language: fa
  • Pages: 228

Gazelle in New York

  • Categories: Art

لحظه‌ای که روی تخت بیمارستان در پاریس، جیغ دختر اولم را شنیدم، به‌مادرم فکر کردم. به‌وقتی که او فرزند نخستش را به‌دنیا آورد که من بودم. فکر کردم لابد او هم همین صدای نحیف را شنیده بوده و روزی همین دختر تازه به‌دنیا آمده هم خواهد شنید. آن وقت بود که انگار ناگهان فهمیدم که هر زندگی سرآغاز یک داستان است. با این همه، مادرم دور بود و مادربزرگ دیگر نبود که برای دخترکم از همان قصه‌های تلخ و ش...

Conversational AI
  • Language: en
  • Pages: 247

Conversational AI

This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is impo...

Explainable Natural Language Processing
  • Language: en
  • Pages: 114

Explainable Natural Language Processing

This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.

Pretrained Transformers for Text Ranking
  • Language: en
  • Pages: 318

Pretrained Transformers for Text Ranking

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing (NLP) applications.This book provides an overview of text ranking with neural network architectures known as transformers, of which BERT (Bidirectional Encoder Representations from Transformers) is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in NLP, information retrieval (IR), and beyond. This book provides a synthesis of existing work as a single point of en...

Statistical Methods for Annotation Analysis
  • Language: en
  • Pages: 218

Statistical Methods for Annotation Analysis

Labelling data is one of the most fundamental activities in science, and has underpinned practice, particularly in medicine, for decades, as well as research in corpus linguistics since at least the development of the Brown corpus. With the shift towards Machine Learning in Artificial Intelligence (AI), the creation of datasets to be used for training and evaluating AI systems, also known in AI as corpora, has become a central activity in the field as well. Early AI datasets were created on an ad-hoc basis to tackle specific problems. As larger and more reusable datasets were created, requiring greater investment, the need for a more systematic approach to dataset creation arose to ensure in...