You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The role that combustion plays in the world’s energy systems will continue to evolve with the changes in technological demands. For example, the challenges that we face today are more focused on the conservation of energy and addressing environmental concerns, which together necessitate cleaner and more efficient combustion processes using a range of fuel sources. This book includes contributions to highlight the recent progress in theory and experiments, development, and demonstration of technologies and systems involving combustion processes, for the production, storage, use, and conservation of energy.
Proceedings of the 9th International Symposium on Scale Modeling This volume contains the works presented at the ninth edition of the International Symposium on Scale Modeling, ISSM9. The symposium brought together 53 scientists from 8 different countries and 3 continents, from both Academia and Research Centers; they participated virtually or in person to present the latest developments and trends in scale application and progress in several engineering fields (mostly in continuum mechanics and fluid dynamics). During the symposium there were 4 keynote talks, the related abstracts are here enclosed. The contents of the talks are about the state-of-the-art of similitude theory and scale modeling and they are useful for any researcher interested in similar topics.
Non-halogenated Flame-Retardant Technology for Epoxy Resins, Thermosets and Composites provides a comprehensive and up-to-date review of the latest advances and technological developments in this field. The chapters cover important flame-retardant systems based on phosphorus, nitrogen, silicon, and boron as well as novel flame retardant epoxy nanocomposites such as graphene, graphitic carbon nitride, MoS2, phosphorene, CNTs, LDHs, and POSS. The use of flame retardant epoxy thermosets and composites in varying applications are also covered, for example, in coatings and paints, in electric and electronic applications and in aviation and automotive sectors. This comprehensive book will be an essential reference resource for academic and industrial researchers, as well as materials scientists and polymer engineers, and for those who are working in the development of flame retardant epoxy-based materials. - Covers basic properties, flame retardant mechanisms, emerging nanomaterials, and industrial applications - Provides the latest information on biobased flame retardants - Discusses hybridization technologies between different morphologies
This book provides an overview of the latest scientific developments and technological advances in two-dimensional (2D) nanomaterials for fire-safe polymers. It summarizes the preparation methods for diverse types of 2D nanomaterials and their polymer composites and reviews their flame-retardant properties, toxic gas and smoke emission during combustion, and inhibition strategies. Covers fundamental aspects like influence of size and dispersion of 2D nanomaterials to help readers develop efficient, multi-functional, and ecofriendly fire-safe polymer composites for a wide range of applications Discusses new-emerging 2D nanomaterials for fire-safe polymer applications, including MXenes, graphitic carbon nitride, boron nitride, and black phosphorus Introduces basic modes of flame retardant action of 2D nanomaterials, including smoke and toxic gas suppression, and the role of 2D nanomaterials in promoting char formation This book is suitable for both scholars and engineers in the fields of polymer science and engineering. It is also aimed at graduate students in chemistry, materials, and safety science and engineering.
Selected peer-reviewed extended articles based on abstracts presented at the 7th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM2022) Aggregated Book
Original research on performance of materials under a wide variety of blasts, impacts, severe loading and fireCritical information for protecting buildings and civil infrastructure against human attack, deterioration and natural disastersTest and design data for new types of concrete, steel and FRP materials This technical book is devoted to the empirical and theoretical analysis of how structures and the materials constituting them perform under the extreme conditions of explosions, fire, and impact. Each of the 119 fully refereed presentations is published here for the first time and was selected because of its original contribution to the science and engineering of how materials, bridges, buildings, tunnels and their components, such as beams and pre-stressed parts, respond to potentially destructive forces. Emphasis is placed on translating empirical data to design recommendations for strengthening structures, including strategies for fire and earthquake protection as well as blast mitigation. Technical details are provided on the development and behavior of new resistant materials, including reinforcements, especially for concrete, steel and their composites.
Bio-Based Flame Retardants for Polymeric Materials provides a comprehensive overview of flame retardants derived directly and indirectly from plant sources, drawing on cutting-edge research and covering preparation methods, testing and evaluation techniques, enhanced properties, and end applications. Chapters introduce bio-based materials in the context of additives for flame retardancy, explaining fundamentals and testing methods and analyzing synthetic approaches and the potential advantages of pursuing a bio-based approach. This is followed by detailed coverage of bio-based retardants, with each chapter covering a specific source and guiding the reader systematically through preparation t...
Advanced Ceramics possess various unique properties and are able to withstand harsh environments. The aim of this book is to cover various aspects of the advanced ceramics like carbides, nitrides and oxides for energy and environment related applications. Advanced ceramics with additional functionality propose significant potential for greater impact in the field of energy and environmental technologies. This book focuses on the nanostructured ceramics synthesis, properties, structure-property relation and application in the area of energy and environment. It covers the high impact work from around 50 leading researchers throughout the world working in this field. This will help metallurgists, biologists, mechanical engineers, ceramicists, material scientists and researchers working in the nanotechnology field with inclusion of every aspect of advanced ceramics for energy and environmental applications.