You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.
This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.
Despite the fact that, if only by number, small and peripheral cities played an important role in fifteenth and sixteenth-century European print culture, book history has mainly been dominated by monographs on individual big book centres. Through a number of specific case studies, which deploy a variety of methods and a wide range of sources, this volume seeks to enhance our understanding of printing and the book trade in small and peripheral European cities in the fifteenth and sixteenth centuries, and to emphasize the necessity of new research for the study of print culture in such cities.
Organic semiconductors are a central topic of advanced materials research. The book is aiming at bridging the gap between the development and production of devices and basic research on thin film characterisation using cutting-edge techniques in surface and interface science. Topics involve organic molecular-based sensors; interfaces in organic diodes and transistors; mobility in organic field effect transistors and space charge problems; integration of optoelectronic nanostructures; nonlinear optical properties of organic nanostructures; the wetting layer problem; how to get from functionalized molecules to nanoaggregates; optical, electrical and mechanical properties of organic nanofibers as well; as near field investigations of organic thin films.
This essential resource consists of a series of critical reviews written by leading scientists, summarising the progress in the field of conjugated thiophene materials. It is an application-oriented book, giving a chemists’ point of view on the state-of-art and perspectives of the field. While presenting a comprehensive coverage of thiophene-based materials and related applications, the aim is to show how the rational molecular design of materials can bring a new breadth to known device applications or even aid the development of novel application concepts. The main topics covered include synthetic methodologies to thiophene-based materials (including the chemistry of thiophene, preparation of oligomers and polymerisation approaches) and the structure and physical properties of oligo- and polythiophenes (discussion of structural effects on electronic and optical properties). Part of the book is devoted to the optical and semiconducting properties of conjugated thiophene materials for electronics and photonics, and the role of thiophene-based materials in nanotechnology.
Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Once again authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective both broad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.
None