You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.
The 4th caesarium brought together world known experts reporting the state-of-the-art of Functional Micro-and Nanosystems. Its purpose was to identify and open up new research directions in this rapidly evolving new area and to discuss the potential with respect to applications in automotive, biochemical and information technology. Thin film technologies are an attractive approach to incorporate functional properties into micro- or nano-systems. The continuing development towards smaller structures is driven by the use of higher driving frequencies and thus smaller wavelengths, the growing integration of different functions, the higher degree of parallelism, and size requirements for the detection of bio-molecules. Hence this new technology opens up new possibilities in terms of high frequency wireless data transmission over long distances, sensors showing high spatial and time resolution and new devices to process biological, optical and electrical signals.
In recent decades, bio-nano interfaces have become a popular topic of research. The interface between biology (e.g., cells, proteins) and man-made materials (e.g., surfaces of labware, medical devices/implants, etc., that are exposed to the biological matter) has always been important, way before the terms of nanotechnology and nanoscience were coined. Nanotechnology brought new techniques into play, with which such interfaces can be investigated with an additional viewpoint. This book is a collection of articles spanning two decades that shows how the newer publications have evolved from the older ones. This allows the reader to see the development in the field not only technically but also conceptually. The book is, in particular, suitable for the researchers and general readers who are looking for inspiration on how ideas develop over decades.
Since the Nobel Prize for the discovery of graphene was presented in 2010, graphene has been frequently leveraged for different applications. Owing to the strategic importance of elastomer-based products in different segments, graphene and its derivatives are often added to different elastomers to improve their properties. Graphene-Rubber Nanocomposites: Fundamentals to Applications provides a comprehensive and innovative account of graphene-rubber composites. Features: Provides up-to-date information and research on graphene-rubber nanocomposites Presents a detailed account of the different niche applications ranging from sensors, flexible electronics to thermal, and EMI shielding materials...
Chemistry of Carbon Nanostructures aims to present the current state-of-the-art synthesis and application of carbon materials like nano diamonds, ribbons and graphene-like structures in science and engineering. Edited by Professor Klaus Müllen, who received the Adolf von Bayer Medal for his contribution to Carbon Chemistry, and Xinliang Feng, this book combines outstanding contributions by a renowned international team of experts. The authors discuss chemical aspects of carbon nanostructures, their synthesis, functionalization and design strategies for defi ned applications. Recent advances in carbon nanomembranes, molecule-assisted ultrasound-induced liquid-phase exfoliation of graphene, and solution synthesis of graphene nanoribbons and biological application of nanodiamonds are highlighted topics. This book provides an excellent reference on the chemistry of carbon nanostructures for Chemists, Materials Scientists, Condensed-matter Physicists, Surface Scientists, and Engineers.
Molecular electronics requires both profound knowledge of a molecule's structure and functionality on a surface and controlled positioning between electrodes with nanometer-sized gaps. In the first part of this work, a detailed scanning tunneling microscope study of two variants of oligo(phenylene ethynylene) molecules is presented. In the second part, methods of fabricating carbon nanotube nanogap electrodes as direct contacts to these molecules are explored.
This book comprehensively reviews the achievements and potentials of a minimally invasive, three-dimensional, and maskless surface structuring technique operating at nanometer scale by using the interaction of focused ion and electron beams (FIB/FEB) with surfaces and injected molecules.
This book addresses current societal debates around the globe. Written by respected researchers from France, Germany, Belgium, Denmark, Spain, Portugal and Italy, the chapters are based on presentations given at a conference organized by the European Academy of Sciences, in partnership with the Royal Academy of Belgium and French Academy of Sciences, in Brussels (Belgium) in November 2016. The book approaches science and society from a perspective of progress. Does progress in science ultimately translate into progress in society? How can we ensure that scientific progress becomes both materially and intellectually beneficial for society, including people who are far away from or socially excluded from it? Progress is a common feature of science and of human societies. There is no doubt that one of the driving forces of the material and intellectual progress of mankind has been science and technology. However, these are not the only forces acting on human history, so that the role of science and technology is not always fully recognized and sometimes even rejected. The various chapters of this book cover many aspects of these issues, arriving at valuable new insights.
This volume contains presentations from the 6th Austrian Polymer meeting, held in Vienna, Austria, in 2003. The articles focus on polymer science and engineering (Polymer Synthesis, polymer physics, Polymer materials and analysis), providing an insight into modern aspects of polymer chemistry. Additionally, related topics in the fields of biomedical science and nanotechnology are covered demonstrating the broad applicability and impact of modern polymer science.