You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Plant-based edible oils rank second only to carbohydrates as an important source of calories in the human diet and are primarily derived from edible oilseeds. These oilseeds are rich in essential fatty acids, high-quality protein, fiber, vitamins, and minerals. They also contain important phytochemicals including sterols, polyphenols, tocopherols, and carotenoids, making the oils they produce critical for metabolic functions, human health benefits, and addressing malnutrition and undernutrition. The global cultivation of edible oilseed crops has seen a significant rise. However, various biotic and abiotic stresses, poor agronomic practices, and extreme climate conditions, either in isolation...
Plants are sessile and prone to multiple stresses in the changing environmental conditions. Of the several strategies adopted by plants to counteract the adverse effects of abiotic stress, phytohormones provide signals to allow plants to survive under stress conditions. They are one of the key systems integrating metabolic and developmental events in the whole plant and the response of plants to external factors and are essential for many processes throughout the life of a plant and influence the yield and quality of crops. The book ‘Phytohormones and Abiotic Stress Tolerance in Plants’ summarizes the current body of knowledge on crosstalk between plant stresses under the influence of phytohormones, and provides state-of-the-art knowledge of recent developments in understanding the role of phytohormones and abiotic stress tolerance in plants. This book presents information on how modulation in phytohormone levels affect regulation of biochemical and molecular mechanisms.
The continual change in climatic conditions induces a series of adaptations in plants to suit the unfavorable conditions for sustainable agriculture. For sustainable agriculture, it is important to unravel the precise mechanism(s) that disturb the homeostatic equilibrium at cellular and molecular level and also to enhance understanding to build strategies for the tolerance of plants. Osmolytes have long been identified as pivotal abiotic stress busters because of their role in plants in overcoming extremely harsh environmental conditions. This edited compilation attempts to put forth the scattered knowledge on osmolytes and their role in abiotic stress tolerance together and disseminate as a package to deal with the problems of lower productivity under stressful environment. It will enhance the understanding on osmolytes function and bioengineering of plants for abiotic stress tolerance. The book covers very interesting topics dealing with various osmolytes and the mechanistic approach for abiotic stress tolerance to pave the path of agricultural scientists, breeders for developing high yielding sustainable transgenic crops.
ETHYLENE IN PLANT BIOLOGY Comprehensive resource detailing the role of ethylene in plant development regulation, gene regulation, root development, stress tolerance, and more Ethylene in Plant Biology presents ethylene research from leading laboratories around the globe to allow readers to gain strong foundational coverage of the topic and aid in further ethylene research as it pertains to plant biology. The work covers general ideas as well as more specific and technical knowledge, detailing the overall role of ethylene in plant biology as a gaseous plant hormone that has emerged as an important signaling molecule which regulates several steps of a plant’s life cycle. The ideas covered in...
Over the last decades, nitric oxide (NO) has emerged as an essential player in redox signalling. Reactive oxygen species (ROS) also act as signals throughout all stages of plant life. Because they are potentially harmful for cellular integrity, ROS and NO levels must be tightly controlled, especially by the classical antioxidant system and additional redox-active metabolites and proteins. Recent work provided evidence that NO and ROS influence each other’s biosynthesis and removal. Moreover, novel signalling molecules resulting from the chemical reaction between NO, ROS and plant metabolites have been highlighted, including N2O3, ONOO-, NO2, S-nitrosoglutathione and 8-NO2 cGMP. They are involved in diverse plant physiological processes, the best characterized being stomata regulation and stress defense. Taken together, these new data demonstrate the complex interactions between NO, ROS signalling and the antioxidant system. This Frontiers in Plant Science Research Topic aims to provide an updated and complete overview of this important and rapidly expanding area through original article and detailed reviews.
As the speed, capabilities, and economic advantages of modern digital devices c- tinue to grow, the need for ef?cient information processing, especially in computer - sion and graphics, dramatically increases. Growth in these ?elds stimulated by eme- ing applications has been both in concepts and techniques. New ideas, concepts and techniques are developed, presented, discussed and evaluated, subsequently expanded or abandoned. Such processes take place in different forms in various ?elds of the c- puter science and technology. The objectives of the ICCVG are: presentation of current research topics and d- cussions leading to the integration of the community engaged in machine vision and computer graphics, carrying out and supporting research in the ?eld and ?nally pro- tion of new applications. The ICCVG is a continuation of the former International Conference on Computer Graphics and Image Processing called GKPO, held in Poland every second year in May since 1990, organized by the Institute of Computer Science of the Polish Academy of Sciences, Warsaw and chaired by the Editor of the International Journal of Machine Graphics and Vision, Prof. Wojciech S. Mokrzycki.
Terrestrial plants are sessile organisms that, differently from animals, can not move in searching of the nutrients and water they need. Instead, they have to change continuously their physiology and morphology to adapt to the environmental changes. When plants suffer from a nutrient deficiency, they develop physiological and morphological responses (mainly in their roots) aimed to facilitate the acquisition and mobilization of such a nutrient. Physiological responses include some ones like acidification of the rizhosphere and release of chelating agents into the medium; and morphological responses include others, like changes in root architecture and development of root hairs. The regulatio...
Understand the impact of climate change on plant growth with this timely introduction Climate change has had unprecedented consequences for plant metabolism and plant growth. In botany, adverse effects of this kind are called plant stress conditions; in recent years, the plant stress conditions generated by climate change have been the subject of considerable study. Plants have exhibited increased photosynthesis, increased water requirements, and more. There is an urgent need to understand and address these changes as we adapt to drastic changes in the global climate. Global Climate Change and Plant Stress Management presents a comprehensive guide to the effects of global climate change on p...
This book illustrates the currently available strategies for managing phytonematodes. It discusses the latest findings on plant-pathogen-microbiome interactions and their impacts on ecosystems, and provides extensive information on the application of microorganisms in the sustainable management of phytonematodes. This is followed by an in-depth discussion of the application of potential strains of biocontrol fungi, endophytes and actinomycetes to enhance plants’ ability to fend off phytonematode attacks, leading to improved plant health. In conclusion, the book addresses new aspects like the biofabrication of nanoparticles and their application in plant disease management, and presents an extensive list for further reading.