You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Genesis – In The Beginning deals with the origin and diversity of Life and early biological evolution and discusses the question of where (hot or cold sources) and when the beginning of Life took place. Among the sections are chapters dealing with prebiotic chemical processes and considering self-replication of polymers in mineral habitats. One chapter is dedicated to the photobiological regime on early Earth and the emergence of Life. This volume covers the role of symmetry, information and order (homochrial biomolecules) in the beginning of Life. The models of protocells and the genetic code with gene transfer are important topics in this volume. Three chapters discuss the Panspermia hypothesis (to answer “Are we from outer Space?”). Other chapters cover the Astrobiological aspects of Life in the Universe in extraterrestrial Planets of the Solar System and deal with cometary hydrosphere (and its connection to Earth). We conclude with the history and frontiers of Astrobiogy.
The first eleven chapters of Genesis (Adam, Eve, Noah) are to the twenty-first century what the Virgin Birth was to the nineteenth century: an impossibility. A technical scientific exegesis of Gen 1-11, however, reveals not only the lost rivers of Eden and its location, but the date of the Flood, the length of the Genesis days, and the importance of comets in the creation of the world. These were hidden in the Hebrew text, now illuminated by modern cosmology, archaeology, and biology. The internet-friendly linguistic tools described in this book make it possible to resolve the mysterious "firmament," to decipher the "bird of the air," and to find the dragonflies of chapter 1. Ancient Egyptian, Greek, Norse, Sumerian, and Sanskrit mythology are all found to support this new interpretation of Genesis. Combining science, myth, and the Genesis accounts together paints a vivid picture of the genetic causes and consequences of the greatest Flood of the human race. It also draws attention to the acute peril our present civilization faces as it follows the same path as its long-forgotten, antediluvian ancestors. Discover why Genesis has never been so possible, so relevant as it is today.
This book surveys the models for the origin of life and presents a new model starting with shaped droplets and ending with life as polygonal Archaea; it collects the most published micrographs of Archaea (discovered only in 1977), which support this conclusion, and thus provides the first visual survey of Archaea. Origin of Life via Archaea’s purpose is to add a new hypothesis on what are called “shaped droplets”, as the starting point, for flat, polygonal Archaea, supporting the Vesicles First hypothesis. The book contains over 6000 distinct references and micrographs of 440 extant species of Archaea, 41% of which exhibit polygonal phenotypes. It surveys the intellectual battleground ...
From Fossils to Astrobiology reviews developments in paleontology and geobiology that relate to the rapidly-developing field of Astrobiology, the study of life in the Universe. Many traditional areas of scientific study, including astronomy, chemistry and planetary science, contribute to Astrobiology, but the study of the record of life on planet Earth is critical in guiding investigations in the rest of the cosmos. In this varied book, expert scientists from 15 countries present peer-reviewed, stimulating reviews of paleontological and astrobiological studies. The overviews of established and emerging techniques for studying modern and ancient microorganisms on Earth and beyond, will be valuable guides to evaluating biosignatures which could be found in the extraterrestrial surface or subsurface within the Solar System and beyond. This volume also provides discussion on the controversial reports of "nanobacteria" in the Martian meteorite ALH84001. It is a unique volume among Astrobiology monographs in focusing on fossil evidence from the geological record and will be valuable to students and researchers alike.
How life originated from the inanimate mixture of organic and inorganic compounds on the priomordial earth remains one of the great unknowns in science. This origin of life, or abiogenesis, continues to be examined in the context of the conditions and materials required for natural life to have begun on Earth both theoretically and experimentally. This book provides a broad but in-depth analysis of the latest discoveries in prebiotic chemsitry from the microscopic to the macroscopic scale; utilising experimental insight to provide a bottom up approach to plausibly explaining how life arose. With contributions from global leaders, this book is an ideal reference for postgraduate students and a single source of comprehensive information on the latest technical and theoretical advancements for researchers in a variety of fields from astrochemistry and astrophysics to organic chemistry and evolution.
First published in 1992, The Proterozoic Biosphere was the first major study of the paleobiology of the Proterozoic Earth.
An in-depth view of the panspermia hypothesis examined against the latest knowledge of planetary formation and related processes. Panspermia is the concept that life can be passively transported through space on various bodies and seed, habitable planets and moons, which we are beginning to learn may exist in large numbers. It is an old idea, but not popular with those who prefer that life on Earth started on Earth, an alternative, also unproven hypothesis. This book updates the concept of panspermia in the light of new evidence on planet formation, molecular clouds, solar system motions, supernovae ejection mechanisms, etc. Thus, it is to be a book about newly understood prospects for the m...
Receptaculitids are extinct high-level fossils that provide a window into the history of life. After the discovery and analysis of a deposit of phosphatized receptaculitids on the Baltic Sea island of Öland, the authors conclude that receptaculitids possess an attribute not found in any other group of organisms, living or fossil.
Planetary Surface Processes is the first advanced textbook to cover the full range of geologic processes that shape the surfaces of planetary-scale bodies. Using a modern, quantitative approach, this book reconsiders geologic processes outside the traditional terrestrial context. It highlights processes that are contingent upon Earth's unique circumstances and processes that are universal. For example, it shows explicitly that equations predicting the velocity of a river are dependent on gravity: traditional geomorphology textbooks fail to take this into account. This textbook is a one-stop source of information on planetary surface processes, providing readers with the necessary background to interpret new data from NASA, ESA and other space missions. Based on a course taught by the author at the University of Arizona for 25 years, it is aimed at advanced students, and is also an invaluable resource for researchers, professional planetary scientists and space-mission engineers.
Geomicrobiology is a combination of geology and microbiology, and includes the study of interaction of microorganisms with their environment, such as in sedimentary rocks. This is a new and rapidly-developing field that has led in the past decade to a radically-revised view of the diversity and activity of microbial life on Earth. Geomicrobiology e