You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
Guides students from simple aspects of set theory to more complex structures. Based on a two-semester course in real analysis, this textbook explains fundamentals of the theory of functions of a real variable, including subsets of the line, the theory of measure, the Lebesgue integral and its relati
Containing more than 1,000 entries, the Dictionary of Classical and Theoretical Mathematics focuses on mathematical terms and definitions of critical importance to practicing mathematicians and scientists. This single-source reference provides working definitions, meanings of terms, related references, and a list of alternative terms and definitions. The dictionary is one of five constituent works that make up the casebound CRC Comprehensive Dictionary of Mathematics.
Offers an elementary, self-contained presentation of the integration processes developed by Lebesgue, Denjoy, Perron, and Henstock. This book contains over 230 exercises (with solutions) that illustrate and expand the material. It is suitable for first-year graduate students who have background in real analysis.
This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
This book covers the material of a one year course in real analysis. It includes an original axiomatic approach to Lebesgue integration which the authors have found to be effective in the classroom. Each chapter contains numerous examples and an extensive problem set which expands considerably the breadth of the material covered in the text. Hints are included for some of the more difficult problems.
None