You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Cephalopods usually have large and mobile eyes with which they constantly scan their environment. The eyes of cephalopods are single-chamber eyes which show resemblance to vertebrate eyes. However there are marked differences such as the cephalopod eye having an everted retina instead of an inverted retina found in vertebrates. Their visual system allows the cephalopods, depending on species, to discriminate objects on the basis of their shapes or sizes, images from mirror images or to learn from the observation of others. The cephalopod visual system is also polarization sensitive and controls camouflage, an extraordinary ability almost exclusive to all cephalopods; they are capable of rapi...
Thanks to animal models, our knowledge of biology and medicine has increased enormously over the past decades, leading to significant breakthroughs that have had a direct impact on the prevention, management and treatment of a wide array of diseases.This book presents a comprehensive reference that reflects the latest scientific research being done in a variety of medical and biological fields utilizing animal models. Chapters on Drosophila, rat, pig, rabbit, and other animal models reflect frontier research in neurology, psychiatry, cardiology, musculoskeletal disorders, reproduction, chronic diseases, epidemiology, and pain and inflammation management. Animal Models in Medicine and Biology offers scientists, clinicians, researchers and students invaluable insights into a wide range of issues at the forefront of medical and biological progress.
This volume provides a comprehensive selection of recent studies addressing insect hearing and acoustic communication. The variety of signalling behaviours and hearing organs makes insects highly suitable animals for exploring and analysing signal generation and hearing in the context of neural processing, ecology, evolution and genetics. Across a variety of hearing species like moths, crickets, bush-crickets, grasshoppers, cicadas and flies, the leading researchers in the field cover recent scientific progress and address key points in current research, such as: - How can we approach the evolution of hearing in insects and what is the developmental and neural origin of the auditory organs? ...
Insect Hearing provides a broadly based view of the functions, mechanisms, and evolution of hearing in insects. With a single exception, the chapters focus on problems of hearing and their solutions, rather than being focused on particular taxa. The exception, hearing in Drosophila, is justified because, due to its ever growing toolbox of genetic and optical techniques, Drosophila is rapidly becoming one of the most important model systems in neurobiology, including the neurobiology of hearing. Auditory systems, whether insectan or vertebrate, must perform a number of basic tasks: capturing mechanical stimuli and transducing these into neural activity, representing the timing and frequency of sound signals, distinguishing between behaviorally relevant signals and other sounds and localizing sound sources. Studying how these are accomplished in insects offers a valuable comparative view that helps to reveal general principles of auditory function.
Like other books in the Laboratory Animal Pocket Reference Series, this guide covers all aspects pertaining to the use of these organisms including their basic biology, humane care and management, husbandry, life support systems, regulatory compliance, technical procedures, veterinary care, and water quality management. In the relatively brief span
The behavior of insects transcends elementary forms of adaptive responding to environmental changes. We discuss examples of exploration, instrumental and observational learning, expectation, learning in a social context, and planning of future actions. We show that learning about sensory cues allows insects to transfer flexibly their responses to novel stimuli attaining thereby different levels of complexity, from basic generalization to categorization and concept learning consistent with rule extraction. We argue that updating of existing memories requires multiple forms of memory processing. A key element in these processes is working memory, an active form of memory considered to allow evaluation of actions on the basis of expected outcome. We discuss which of these cognitive faculties can be traced to specific neural processes and how they relate to the overall organization of the insect brain.