Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Counterexamples in Analysis
  • Language: en
  • Pages: 226

Counterexamples in Analysis

These counterexamples deal mostly with the part of analysis known as "real variables." Covers the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, functions of 2 variables, plane sets, more. 1962 edition.

Problems in Analysis
  • Language: en
  • Pages: 232

Problems in Analysis

These problems and solutions are offered to students of mathematics who have learned real analysis, measure theory, elementary topology and some theory of topological vector spaces. The current widely used texts in these subjects provide the background for the understanding of the problems and the finding of their solutions. In the bibliography the reader will find listed a number of books from which the necessary working vocabulary and techniques can be acquired. Thus it is assumed that terms such as topological space, u-ring, metric, measurable, homeomorphism, etc., and groups of symbols such as AnB, x EX, f: IR 3 X 1-+ X 2 - 1, etc., are familiar to the reader. They are used without intro...

Modern Real and Complex Analysis
  • Language: en
  • Pages: 506

Modern Real and Complex Analysis

Modern Real and Complex Analysis Thorough, well-written, and encyclopedic in its coverage, this textoffers a lucid presentation of all the topics essential to graduatestudy in analysis. While maintaining the strictest standards ofrigor, Professor Gelbaum's approach is designed to appeal tointuition whenever possible. Modern Real and Complex Analysisprovides up-to-date treatment of such subjects as the Daniellintegration, differentiation, functional analysis and Banachalgebras, conformal mapping and Bergman's kernels, defectivefunctions, Riemann surfaces and uniformization, and the role ofconvexity in analysis. The text supplies an abundance of exercisesand illustrative examples to reinforce learning, and extensivenotes and remarks to help clarify important points.

Problems in Real and Complex Analysis
  • Language: en
  • Pages: 490

Problems in Real and Complex Analysis

This text covers many principal topics in the theory of functions of a complex variable. These include, in real analysis, set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces. In complex analysis, they include polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.

Theorems and Counterexamples in Mathematics
  • Language: en
  • Pages: 339

Theorems and Counterexamples in Mathematics

The gratifying response to Counterexamples in analysis (CEA) was followed, when the book went out of print, by expressions of dismay from those who were unable to acquire it. The connection of the present volume with CEA is clear, although the sights here are set higher. In the quarter-century since the appearance of CEA, mathematical education has taken some large steps reflected in both the undergraduate and graduate curricula. What was once taken as very new, remote, or arcane is now a well-established part of mathematical study and discourse. Consequently the approach here is designed to match the observed progress. The contents are intended to provide graduate and ad vanced undergraduat...

Vertex Algebras and Algebraic Curves
  • Language: en
  • Pages: 418

Vertex Algebras and Algebraic Curves

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possib...

A Companion to Analysis
  • Language: en
  • Pages: 608

A Companion to Analysis

This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a l...

The Variational Theory of Geodesics
  • Language: en
  • Pages: 211

The Variational Theory of Geodesics

Riemannian geometry is a fundamental area of modern mathematics and is important to the study of relativity. Within the larger context of Riemannian mathematics, the active subdiscipline of geodesics (shortest paths) in Riemannian spaces is of particular significance. This compact and self-contained text by a noted theorist presents the essentials of modern differential geometry as well as basic tools for the study of Morse theory. The advanced treatment emphasizes analytical rather than topological aspects of Morse theory and requires a solid background in calculus. Suitable for advanced undergraduates and graduate students of mathematics, the text opens with a chapter on smooth manifolds, followed by a consideration of spaces of affine connection. Subsequent chapters explore Riemannian spaces and offer an extensive treatment of the variational properties of geodesics and auxiliary theorems and matters.

Calculus Deconstructed
  • Language: en
  • Pages: 509

Calculus Deconstructed

Calculus Deconstructed is a thorough and mathematically rigorous exposition of single-variable calculus for readers with some previous exposure to calculus techniques but not to methods of proof. This book is appropriate for a beginning Honors Calculus course assuming high school calculus or a "bridge course" using basic analysis to motivate and illustrate mathematical rigor. It can serve as a combination textbook and reference book for individual self-study. Standard topics and techniques in single-variable calculus are presented in context of a coherent logical structure, building on familiar properties of real numbers and teaching methods of proof by example along the way. Numerous examples reinforce both practical and theoretical understanding, and extensive historical notes explore the arguments of the originators of the subject. No previous experience with mathematical proof is assumed: rhetorical strategies and techniques of proof (reductio ad absurdum, induction, contrapositives, etc.) are introduced by example along the way. Between the text and exercises, proofs are available for all the basic results of calculus for functions of one real variable.

Topology for Analysis
  • Language: en
  • Pages: 399

Topology for Analysis

Starting with the first principles of topology, this volume advances to general analysis. Three levels of examples and problems make it appropriate for students and professionals. Abundant exercises, ordered and numbered by degree of difficulty, illustrate important concepts, and a 40-page appendix includes tables of theorems and counterexamples. 1970 edition.