You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The NMR Notebook is a set of lecture notes for scientists and engineers who want to refresh their knowledge on NMR. Equally, the Notebookgiveslecturers an aid to provide a framework of basic knowhow covering all fields of NMR,i.e. NMR methodology and hardware, chemical analysis, 2D-spectroscopy, NMR imaging, flow NMR, and quality-control NMR. The material is presented in a Power-Pointformat, with pairs of sheets addressing particular topics. One sheet is text, stating the key information, the other a color illustration. Rigorous derivations are avoided in favor of intuitive arguments. The notebook is intended for beginning graduate students and doctoral students of Physics, Chemistry, Chemical Engineering, and Material Science. The information has been organized and selected fora one-semester, two-hour course. At present there is no other teaching and learning text that addresses the different aspects of NMR in such a comprehensive fashion
NMR imaging of materials is a field of increasing importance. Applications expand from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets, and hemodialyzers into various fields of engineering for process optimization and product and quality control, for example, of polymer materials, biomaterials, elastomers, and ceramics. While the results of NMR imaging are being appreciated in a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of humans. This book provides an introduction to NMR imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual NMR in terms of special approaches to spatial resolution like an NMR surface scanner. Special attention is paid to the large variety of ways to generate image contrast - the most prominent feature of NMR. The text is strong on methodology, and includes today's important application areas.
NMR imaging of materials is a field of increasing importance. Applications expand from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets, and hemodialyzers into various fields of engineering for process optimization and product and qualitycontrol, for example, of polymer materials, biomaterials, elastomers, and ceramics. While the results of NMR imaging are being appreciated in a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of humans. This book provides anintroduction to NMR imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual NMR in terms of special approaches to spatial resolution like an NMR surface scanner. Special attention is paid to the large variety of ways to generate imagecontrast - the most prominent feature of NMR. The text is strong on methodology, and includes today's important application areas.
This book describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications in medicine, materials science, and chemical engineering. It will be the first comprehensive account of this new device and its applications. Among the key advances of this method is that images can be obtained in much shorter times than originally anticipated, and that even vector maps of flow fields can be measured although the magnetic fields are highly inhomogeneous. Furthermore, the equipment is small, mobile and affordable to small and medium enterprises and can be located in doctors’ offices.
Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, part...
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting mag...
Magnetic Resonance Microscopy Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource In Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research, a team of distinguished researchers delivers a comprehensive exploration of the use of magnetic resonance microscopy (MRM) and similar techniques in an interdisciplinary milieux. Opening with a section on hardware and methodology, the book moves on to consider developments in the field of mobile nuclear magnetic resonance. Essential processes, including filtration, multi-phase flow and transport, and a wide range of systems – from biomarker...
Although nuclear magnetic resonance is perhaps best known for its spectacular utility in medical tomography, its potential applicability to fields such as biology, materials science, and chemical physics is being increasingly recognized as laboratory NMR spectrometers are adapted to enable small scale imaging. This excellent introduction to the subject explores principles and common themes underlying two key variants of NMR microscopy, and provides many examples of their use. Methods discussed are not only important to fundamental biological and physical research, but have applications to a wide variety of industries, including those concerned with petrochemicals, polymers, biotechnology, food processing, and natural product processing. The wide range of scientists interested in NMR microscopy will want to own a copy of this book.
1. G. Engelhardt, H. Koller, Stuttgart, FRG: 29Si NMR of Inorganic Solids 2. H. Pfeifer, Leizpig, FRG: NMR of Solid Surfaces 3. A. Sebald, Bayreuth, FRG: MAS and CP/MAS NMR of Less Common Spin-1/2 Nuclei 4. C. J{ger, Mainz, FRG: Satellite Transition Spectroscopy of Quadrupolar Nuclei 5. D. Brinkmann, M. Mali, Z}rich, CH: NMR-NQR Studies of High-Temperature Superconductors.
First multi-year cumulation covers six years: 1965-70.