You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book resulted from the lectures held at The Fields Institute (Waterloo, ON, Canada). Leading international experts presented current results on the theory of C*-algebras and von Neumann algebras, together with recent work on the classification of C*-algebras. Much of the material in the book is appearing here for the first time and is not available elsewhere in the literature.
This volume collects research papers in quantum probability and related fields and reflects the recent developments in quantum probability ranging from the foundations to its applications.
This volume and Stochastic Processes, Physics and Geometry: New Interplays I present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are ...
Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will be engaged, informed and inspired by the contents of these two volumes. An extensive bibliography containing the references from all the lectures is included in Volume 12.
Offers an introduction to large deviations. This book is divided into two parts: theory and applications. It presents basic large deviation theorems for i i d sequences, Markov sequences, and sequences with moderate dependence. It also includes an outline of general definitions and theorems.
This book is the first systematic treatment of measures on projection lattices of von Neumann algebras. It presents significant recent results in this field. One part is inspired by the Generalized Gleason Theorem on extending measures on the projection lattices of von Neumann algebras to linear functionals. Applications of this principle to various problems in quantum physics are considered (hidden variable problem, Wigner type theorems, decoherence functional, etc.). Another part of the monograph deals with a fascinating interplay of algebraic properties of the projection lattice with the continuity of measures (the analysis of Jauch-Piron states, independence conditions in quantum field theory, etc.). These results have no direct analogy in the standard measure and probability theory. On the theoretical physics side, they are instrumental in recovering technical assumptions of the axiomatics of quantum theories only by considering algebraic properties of finitely additive measures (states) on quantum propositions.
This work explores joint hyponormality of Toeplitz pairs. Topics include: hyponormality of Toeplitz pairs with one co-ordinate a Toeplitz operator with analytic polynomial symbol; hyponormality of trigonometric Toeplitz pairs; and the gap between $2$-hyponormality and subnormality.
This paper concerns the relation between the Lifted Root Number Conjecture, as introduced in [GRW2], and a new equivariant form of Iwasawa theory. A main conjecture of equivariant Iwasawa theory is formulated, and its equivalence to the Lifted Root Number Conjecture is shown subject to the validity of a semi-local version of the Root Number Conjecture, which itself is proved in the case of a tame extension of real abelian fields.
This volume contains current work at the frontiers of research in quantum probability, infinite dimensional stochastic analysis, quantum information and statistics. It presents a carefully chosen collection of articles by experts to highlight the latest developments in those fields. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduate students and applied mathematicians.
This proceedings volume originates from a conference held in Herrnhut in June 2013. It provides unique insights into the power of abstract methods and techniques in dealing successfully with numerous applications stemming from classical analysis and mathematical physics. The book features diverse topics in the area of operator semigroups, including partial differential equations, martingale and Hilbert transforms, Banach and von Neumann algebras, Schrödinger operators, maximal regularity and Fourier multipliers, interpolation, operator-theoretical problems (concerning generation, perturbation and dilation, for example), and various qualitative and quantitative Tauberian theorems with a focu...