You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the ...
The ideas and principles of stochastic analysis have managed to penetrate into various fields of pure and applied mathematics in the last 15 years; it is particularly true for mathematical physics. This volume provides a wide range of applications of stochastic analysis in fields as varied as statistical mechanics, hydrodynamics, Yang-Mills theory and spin-glass theory.The proper concept of stochastic dynamics relevant to each type of application is described in detail here. Altogether, these approaches illustrate the reasons why their dissemination in other fields is likely to accelerate in the years to come.
This volume represents the outgrowth of an ongoing workshop on stochastic analysis held in Lisbon. The nine survey articles in the volume extend concepts from classical probability and stochastic processes to a number of areas of mathematical physics. It is a good reference text for researchers and advanced students in the fields of probability, stochastic processes, analysis, geometry, mathematical physics, and physics. Key topics covered include: nonlinear stochastic wave equations, completely positive maps, Mehler-type semigroups on Hilbert spaces, entropic projections, and many others.
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. Significant progress in the understanding of such systems has been made recently. These books present the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications.
This volume is the third and last of a series devoted to the lecture notes of the Grenoble Summer School on “Open Quantum Systems” which took place at the th th Institut Fourier from June 16 to July 4 2003. The contributions presented in this volumecorrespondtoexpanded versionsofthelecturenotesprovidedbytheauthors to the students of the Summer School. The corresponding lectures were scheduled in the last part of the School devoted to recent developments in the study of Open Quantum Systems. Whereas the rst two volumes were dedicated to a detailed exposition of the mathematical techniques and physical concepts relevant in the study of Open S- tems with noapriori pre-requisites, the contri...
The origin of this book lies in an invitation to give a series of lectures on Malliavin calculus at the Probability Seminar of Venezuela, in April 1985. The contents of these lectures were published in Spanish in [176]. Later these notes were completed and improved in two courses on Malliavin cal culus given at the University of California at Irvine in 1986 and at Ecole Polytechnique Federale de Lausanne in 1989. The contents of these courses correspond to the material presented in Chapters 1 and 2 of this book. Chapter 3 deals with the anticipating stochastic calculus and it was de veloped from our collaboration with Moshe Zakai and Etienne Pardoux. The series of lectures given at the Eighth Chilean Winter School in Prob ability and Statistics, at Santiago de Chile, in July 1989, allowed us to write a pedagogical approach to the anticipating calculus which is the basis of Chapter 3. Chapter 4 deals with the nonlinear transformations of the Wiener measure and their applications to the study of the Markov property for solutions to stochastic differential equations with boundary conditions.
This volume contains surveys as well as research articles broadly centered on spectral analysis. Topics range from spectral continuity for magnetic and pseudodifferential operators to localization in random media, from the stability of matter to properties of Aharonov-Bohm and Quantum Hall Hamiltonians, from waveguides and resonances to supersymmetric models and dissipative fermion systems. This is the first of a series of volumes reporting every two years on recent progress in spectral theory.
This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya’s papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanyin...
Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will be engaged, informed and inspired by the contents of these two volumes. An extensive bibliography containing the references from all the lectures is included in Volume 12.
The dynamics of infinite classical lattice systems has been considered and has led to the study of the properties of ergodicity and convergence to equilibrium of a new class of Markov semigroups. Quantum analogues of these semigroups have also been considered. However, the problem of deriving these Markovian semigroups and, what is much more interesting, the associated stochastic flows, as limits of Hamiltonian systems, rather than postulating their form on a phenomenological basis, is essentially open both in the classical case and in the quantum case. This book presents a conjecture that, by coupling a quantum spin system in finite volume to a quantum field via a suitable interaction, applying the stochastic golden rule and taking the thermodynamic limit, one may obtain a class of quantum flows which, when restricted to an appropriate Abelian subalgebra, gives rise to the classical interacting particle systems studied in classical statistical mechanics.