You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explains key concepts in theoretical chemistry and explores practical applications in structural chemistry. For experimentalists, it highlights concepts that explain the underlying mechanisms of observed phenomena, and at the same time provides theoreticians with explanations of the principles and techniques that are important in property design. Themes covered include conceptual and applied wave functions and density functional theory (DFT) methods, electronegativity and hard and soft (Lewis) acid and base (HSAB) concepts, hybridization and aromaticity, molecular magnetism, spin transition and thermochromism. Offering insights into designing new properties in advanced functional materials, it is a valuable resource for undergraduates of physical chemistry, cluster chemistry and structure/reactivity courses as well as graduates and researchers in the fields of physical chemistry, chemical modeling and functional materials.
Optical imaging of biological systems has undergone spectacular development in recent years, producing a quantity and a quality of information that, just twenty years ago, could only be dreamed of by physicists, biologists and physicians. Unconventional imaging systems provide access to physical quantities – phase, absorption, optical index, the polarization property of a wave or the chemical composition of an object – not accessible to conventional measurement systems. To achieve this, these systems use special optical setups and specific digital image processing to reconstruct physical quantities. This field is also known as computational imaging. This book presents various non-conventional imaging modalities developed for the biomedical field: wave front analysis imaging, digital holography/tomography, optical nanoscopy, endoscopy and singlesensor imaging. Experimental setups and reconstruction algorithms are presented for each modality.
It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such...
A genealogy of the descendants of Thomas Gourley born in 1752 in Belfast, Ireland. He came to Lancaster, Pennsylvania in 1768. In 1772 he married Martha McNeely. In 1781 they were living in Watauge, Settlement, Washington County, North Carolina which is now in Carter County, Tennessee.
This proceedings volume convenes selected, peer-reviewed papers presented at the 3rd International Conference on Mathematics and its Applications in Science and Engineering – ICMASE 2022, which was held on July 4–7, 2022 by the Technical University of Civil Engineering of Bucharest, Romania. Works in this volume cover new developments in applications of mathematics in science and engineering, with emphasis on mathematical and computational modeling of real-world problems. Topics range from the use of differential equations to model mechanical structures to the employ of number theory in the development of information security and cryptography. Educational issues specific to the acquisition of mathematical competencies by engineering and science students at all university levels are also touched on. Researchers and university students are the natural audiences for this book, which can be equally appealing to practitioners seeking up-to-date techniques in mathematical applications to different contexts and disciplines.
None
The art of chemistry is to thoroughly understand the properties of molecular compounds and materials and to be able to prepare novel compounds with p- dicted and desirable properties. The basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. The thermodynamic properties (stability, selectivity, redox potential), reactivities (bond breaking and formation, catalysis, electron transfer) and electronic properties (spectroscopy, magnetism) depend on the structure of a compound. Nevertheless, the discovery of novel molecular compounds and materials with exciting prop- ties is often and to a large extent based on serendipity. Fo...