You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This title analyzes the chemical reactions, structures and fundamental properties of supercritical fluid systems for the production of new compounds, nanomaterials, fibers, and films. It complies contemporary research and technological advances for increased selectivity and reduced waste in chemical, industrial, pharmaceutical, and biomedical applications. Topics include fluid dynamics, catalysis, hydrothermal synthesis, surfactants, conducting polymers, crystal growth, and other aspects and applications of supercritical fluids.
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and optimization is analyzed. The relation between the mixture molecular properties, the selection of the ...
This book is a compilation of the papers presented at the Twenty-Eighth Mid-Atlantic Industrial and Hazardous Waste Conference. It aims to provide a forum for those who are interested in the advancement and applications of technologies and methods for managing industrial and hazardous waste.
The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated ...
Fuel cells are a very promising technology for the clean and efficient production of power. Fuel Cell Technology is an up-to-date survey of the development of this technology and will be bought by researchers and graduate students in materials control and chemical engineering working at universities and institutions and researchers and technical managers in commercial companies working in fuel cell technology.
Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources — including renewable materials — using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, li...
This book defines environmental reaction engineering principles, including reactor design, for the development of processes that provide an environmental benefit. With regard to pollution prevention, the focus is primarily on new reaction and reactor technologies that minimize the production of undesirable side-products (pollutants), but the use of reaction engineering as a means of treating wastes that are produced through other means is also considered.First is a section on environmentally benign combustion. The three papers discuss methods of reducing the formation of PAHs and NOx, as well as other environmentally sensitive combustion products. The next section contains a collection of co...
Nanomaterials from Renewable Resources for Emerging Applications details developments in nanomaterials produced from renewable materials and their usage in food and packaging, energy conservation, and environmental applications. • Introduces fundamentals of nanomaterials from renewable resources, including processing and characterization. • Covers nanomaterials for applications in food and packaging, including nanocellulose, lignin- and chitosan-based nanomaterials, and nanostarch. • Discusses applications in energy conservation, such as supercapacitors, electrolyte membranes, energy storage devices, and insulation. • Describes environmental uses such as water remediation and purification and oil spill clean-ups. • Highlights advantages and challenges in commercialization of green nanoparticle-based materials. Equally beneficial to researchers and professionals, this book is aimed at readers across materials science and engineering, chemical engineering, chemistry, and related fields interested in sustainable engineering.
This text provides an introduction to supercritical fluids with easy-to-use Excel spreadsheets suitable for both specialized-discipline (chemistry or chemical engineering student) and mixed-discipline (engineering/economic student) classes. Each chapter contains worked examples, tip boxes and end-of-the-chapter problems and projects. Part I covers web-based chemical information resources, applications and simplified theory presented in a way that allows students of all disciplines to delve into the properties of supercritical fluids and to design energy, extraction and materials formation systems for real-world processes that use supercritical water or supercritical carbon dioxide. Part II t...