You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field
In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects. This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of ...
This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient function, the Riemann zeta function and the Riemann...
Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane’s Online Encyclopedia of Integer Sequences, at the end of several of the sections.
None
The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.
Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field
An innovative and appealing way for the layperson to develop math skills--while actually enjoying it Most people agree that math is important, but few would say it's fun. This book will show you that the subject you learned to hate in high school can be as entertaining as a witty remark, as engrossing as the mystery novel you can't put down--in short, fun! As veteran math educators Posamentier and Lehmann demonstrate, when you realize that doing math can be enjoyable, you open a door into a world of unexpected insights while learning an important skill. The authors illustrate the point with many easily understandable examples. One of these is what mathematicians call the "Ruth-Aaron pair" (7...
Includes section "Recent publications."