You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book includes a collection of state-of-the-art contributions addressing both theoretical developments in, and successful applications of, seismic structural health monitoring (S2HM). Over the past few decades, Seismic SHM has expanded considerably, due to the growing demand among various stakeholders (owners, managers and engineering professionals) and researchers. The discipline has matured in the process, as can be seen by the number of S2HM systems currently installed worldwide. Furthermore, the responses recorded by S2HM systems hold great potential, both with regard to the management of emergency situations and to ordinary maintenance needs. The book’s 17 chapters, prepared by le...
As transport networks become more congested, there is a growing need to adopt policies that manage demand and make full use of existing assets. Advances in information technology are now such that intelligent transportation systems (ITS) offer real potential to meet this challenge by monitoring current conditions, predicting what might happen in the future, and providing the means to manage transport proactively and on an area-wide basis. Modeling and Simulation of Intelligent Transportation Systems provides engineers, professionals, and researchers an intuitive appreciation for ITS theory, related sensor technologies, and other practical applications, including traffic management, safety, design optimization, and sustainability. Provides the theory and practical applications of Intelligent Transport Theory which will be helpful as highway construction recedes as a sustainable long-term solution. Includes several case studies that illustrate the concepts presented throughout.
This volume gathers the latest advances, innovations, and applications in the field of structural health monitoring (SHM) and more broadly in the fields of smart materials and intelligent systems, as presented by leading international researchers and engineers at the 10th European Workshop on Structural Health Monitoring (EWSHM), held in Palermo, Italy on July 4-7, 2022. The volume covers highly diverse topics, including signal processing, smart sensors, autonomous systems, remote sensing and support, UAV platforms for SHM, Internet of Things, Industry 4.0, and SHM for civil structures and infrastructures. The contributions, which are published after a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists.
The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.
Data Driven Methods for Civil Structural Health Monitoring and Resilience: Latest Developments and Applications provides a comprehensive overview of data-driven methods for structural health monitoring (SHM) and resilience of civil engineering structures, mostly based on artificial intelligence or other advanced data science techniques. This allows existing structures to be turned into smart structures, thereby allowing them to provide intelligible information about their state of health and performance on a continuous, relatively real-time basis. Artificial-intelligence-based methodologies are becoming increasingly more attractive for civil engineering and SHM applications; machine learning and deep learning methods can be applied and further developed to transform the available data into valuable information for engineers and decision makers.
Topics in Modal Analysis I, Volume 5. Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the fifth volume of six from the Conference, brings together 53 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Modal Parameter Identification Damping of Materials and Members New Methods Structural Health Monitoring Processing Modal Data Operational Modal Analysis Damping Excitation Methods Active Control Damage Detection for Civil Structures System Identification: Applications
This volume presents peer-reviewed contributions from the 10th International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES), held in Milan, Italy on August 30-September 1, 2023. The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation. The topics included but were not limited to: damage identification and structural health monitoring; testing, sensing and modeling; vibration isolation and control; system and model identification; coupled dynamical systems (including human–structure, vehicle–structure, and soil–structure interaction); and application of advanced techniques involving the Internet of Things, robot, UAV, big data and artificial intelligence.
Healthcare facilities or hospital systems are classified as some of the most critical infrastructure systems when responding to natural disasters. Seismic Resilience Assessment of Hospital Infrastructure systematically presents a suite of novel techniques developed by the authors and their team for seismic resilience assessment of hospital infrastructure, with particular emphasis on seismic tests and fragility models of hospital equipment, resilience assessment of single hospital buildings and emergency departments, and post-earthquake functionality of urban hospital infrastructures. Features: Presents a state-of-the-art review on hospital resilience Develops seismic fragility model database for hospital equipment based on shaking table tests Provides a road map for effective and efficient methods necessary for assessing and improving seismic resilience of hospital systems and other critical engineering systems Expertly summarizes outcomes of many important research projects sponsored by various research agencies, including the National Natural Science Foundation of China
Janello Torriani, known in the Spanish-speaking world as Juanelo Turriano (Cremona, Italy ca. 1500 – Toledo, Spain 1585), is the greatest among Renaissance inventors and constructors of machines. Contemporary literates and mathematicians celebrated Janello Torriani and his creations in their writings. It is striking how such fame turned into nearly complete oblivion, leaving only a few clues of a blurred and distorted memory dispersed here and there. This book wishes to show the central role that artisans formed in the Vitruvian tradition played in demonstrating through practical mathematics an increasing and positive control over Nature, a step rooted in humanist culture and foundational for the understanding of those historical processes known as the Scientific and the Industrial Revolutions.