You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.
This book is the first of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honor of Patrizia Pucci's 60th birthday. The workshop brought t
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
This volume contains papers based on lectures given at the 12th International Conference on p-adic Functional Analysis, which was held at the University of Manitoba on July 2-6, 2012. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Provides an historical overview of several decades in integral geometry and geometric analysis as well as recent advances in these fields and closely related areas. It contains several articles focusing on the mathematical work of Sigurdur Helgason, including an overview of his research by Gestur Olafsson and Robert Stanton.
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory.This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
This volume contains the proceedings of the conference ``Analysis, Geometry and Quantum Field Theory'' held at Potsdam University in September 2011, which honored Steve Rosenberg's 60th birthday. The papers in this volume cover a wide range of areas, including Quantum Field Theory, Deformation Quantization, Gerbes, Loop Spaces, Index Theory, Determinants of Elliptic Operators, K-theory, Infinite Rank Bundles and Mathematical Biology.
This book presents a selection of papers based on the XXXIII Białowieża Workshop on Geometric Methods in Physics, 2014. The Białowieża Workshops are among the most important meetings in the field and attract researchers from both mathematics and physics. The articles gathered here are mathematically rigorous and have important physical implications, addressing the application of geometry in classical and quantum physics. Despite their long tradition, the workshops remain at the cutting edge of ongoing research. For the last several years, each Białowieża Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented; some of the lectures are reproduced here. The unique atmosphere of the workshop and school is enhanced by its venue, framed by the natural beauty of the Białowieża forest in eastern Poland. The volume will be of interest to researchers and graduate students in mathematical physics, theoretical physics and mathematmtics.
This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27–October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory. The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher ca...