You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabri...
Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devi...
2D Materials-Based Electrochemical Sensors presents electrochemical and biosensor applications of 2D materials and addresses their fundamental properties, sensing mechanisms and fabrication approaches. The book also includes recent theoretical and experimental investigations. Other sections cover the development of sensors and biosensors from the fabrication of two dimensional layered materials to sensing applications and address recent developments and future perspectives on electrochemical sensors based on a wide variety of 2D materials such as graphene, MXene, boron nitride (h-BN), transition metal dichalcogenides (TMDs) and black phosphorous. This will be a useful resource for researcher...
Written and edited by a team of experts in the field, this groundbreaking new volume from Wiley-Scrivener offers the latest trends, processes, and breakthroughs in biomass and solar-powered technologies aimed at marching toward sustainable digital cities. This exciting new volume includes the research contribution of experts in solar and biomass-powered digital cities, incorporating sustainability by embedding computing and communication in day-to-day smart city applications. This book will be of immense use to practitioners in industries focusing on adaptive configuration and optimization in smart city systems. A wide array of smart city applications is also discussed with suitable use cases. The contributors to this book include renowned academics, industry practitioners, and researchers. Through case studies, it offers a rigorous introduction to the theoretical foundations, techniques, and practical solutions in this exciting area. Building smart cities with effective communication, control, intelligence, and security is discussed from societal and research perspectives. Whether for the veteran engineer, new hire, or student, this is a must-have volume for any library.
In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.
In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.
Supercapacitors are presently applied in various devices and have the potential to be used in many fields in the future. For example, the use of supercapacitors is currently limited not only to automobiles, buses, and trucks, which have been electrified recently, but also to railways and aircraft. We believe that these devices are the most suitable physical batteries for absorbing regenerative energy produced during motor regeneration; thus, further research and development in this direction is expected in the future.
Hydrogels are important polymer-based materials with innate fascinating properties and applications: they are three-dimensional, hydrophilic, polymeric networks that can absorb large amounts of water or aqueous fluids and are biocompatible, mechanically flexible, and soft. The incorporation of functionalities to develop smart and bioactive platforms has led to a myriad of applications. This book offers a comprehensive overview of multifunctional hydrogels, covering fundamentals, properties, and advanced applications in a progressive way. While each chapter can be read stand-alone, together they clearly describe the fundamental concepts of design, synthesis, and fabrication, as well as proper...
This book examines the synthesis of graphene obtained from different natural raw materials and waste products as a low-cost, environmentally friendly alternative that delivers a quality final product. Expert researchers review potential sources of natural raw materials and waste products, methods or characterization, graphene synthesis considerations, and important applications. FEATURES Explores the different approaches to the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) from natural and industrial carbonaceous wastes Outlines the modification and characterization methods of GO and rGO Addresses the characterization methods of GO and rGO Details applications of GO and rGO created from natural sources Graphene is a multidisciplinary material with applications in almost every sector of science and engineering. Graphene from Natural Sources: Synthesis, Characterization, and Applications is a noteworthy reference for material scientists and engineers in academia and industry interested in reducing costs and employing green synthesis methods in their work.
This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.