You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. ...
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines
Political science and sociology increasingly rely on mathematical modeling and sophisticated data analysis, and many graduate programs in these fields now require students to take a "math camp" or a semester-long or yearlong course to acquire the necessary skills. Available textbooks are written for mathematics or economics majors, and fail to convey to students of political science and sociology the reasons for learning often-abstract mathematical concepts. A Mathematics Course for Political and Social Research fills this gap, providing both a primer for math novices in the social sciences and a handy reference for seasoned researchers. The book begins with the fundamental building blocks o...
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems, from loading data to training models and leveraging neural networks. Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure that it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts an...
Hiring Data Scientists and Machine Learning Engineers is a concise, practical guide to help you hire the right people for your organization. The book will help you navigate the plethora of data science related roles and skills and help you create an effective hiring strategy to suit your organization's needs.
Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering,and clearly explains how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger code base Learn how to write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more
This book gathers the proceedings of the 12th International Conference on Frontier Computing, held in Tokyo, Japan, on July 12–15, 2022, and provides comprehensive coverage of the latest advances and trends in information technology, science, and engineering. It addresses a number of broad themes, including communication networks, business intelligence and knowledge management, Web intelligence, and related fields that inspire the development of information technology. The respective contributions cover a wide range of topics: database and data mining, networking and communications, Web and Internet of things, embedded systems, soft computing, social network analysis, security and privacy, optical communication, and ubiquitous/pervasive computing. Many of the papers outline promising future research directions, and the book benefits students, researchers, and professionals alike. Further, it offers a useful reference guide for newcomers to the field.
Electronic musicians, rockers, rappers, and regular folks use Reason virtual studio software to create and self-record studio-quality music on PCs and Macs. This book shows you how to harness all the tools of this popular package to produce your own professional sound. Veteran studio engineer and professional musician Cliff Truesdell explains everything you need to get going?from Reason's full array of virtual instruments, effects, and functions to priceless inside-the-studio insights and tips you can use to start creating original pieces right away.
Learn the answers to 30 cutting-edge questions in machine learning and AI and level up your expertise in the field. If you’re ready to venture beyond introductory concepts and dig deeper into machine learning, deep learning, and AI, the question-and-answer format of Machine Learning Q and AI will make things fast and easy for you, without a lot of mucking about. Born out of questions often fielded by author Sebastian Raschka, the direct, no-nonsense approach of this book makes advanced topics more accessible and genuinely engaging. Each brief, self-contained chapter journeys through a fundamental question in AI, unraveling it with clear explanations, diagrams, and hands-on exercises. WHAT'...
Discover the Exciting World of Python Programming Welcome, aspiring programmer, to the fascinating realm of Python programming! Are you ready to embark on an exciting journey through the captivating land of code? Do you aspire to master the power of Python and become a skilled coder? Look no further, this guide is here to lead you through a thrilling and engaging quest! This extraordinary book is designed with the beginner in mind, providing a fun and engaging approach to learning Python. With its humorous and casual tone, this book will make you feel like you're on an adventurous journey while mastering the essential principles of Python programming. In this captivating guide, you'll discov...