You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A collection of 28 refereed papers grouped according to four broad topics: duality and optimality conditions, optimization algorithms, optimal control, and variational inequality and equilibrium problems. Suitable for researchers, practitioners and postgrads.
After more than three decades of research, the subject of complementarity problems and its numerous extensions has become a well-established and fruitful discipline within mathematical programming and applied mathematics. Sources of these problems are diverse and span numerous areas in engineering, economics, and the sciences. Includes refereed articles.
Many of the most challenging problems in the applied sciences involve non-differentiable structures as well as partial differential operators, thus leading to non-smooth distributed parameter systems. This edited volume aims to establish a theoretical and numerical foundation and develop new algorithmic paradigms for the treatment of non-smooth phenomena and associated parameter influences. Other goals include the realization and further advancement of these concepts in the context of robust and hierarchical optimization, partial differential games, and nonlinear partial differential complementarity problems, as well as their validation in the context of complex applications. Areas for which applications are considered include optimal control of multiphase fluids and of superconductors, image processing, thermoforming, and the formation of rivers and networks. Chapters are written by leading researchers and present results obtained in the first funding phase of the DFG Special Priority Program on Nonsmooth and Complementarity Based Distributed Parameter Systems: Simulation and Hierarchical Optimization that ran from 2016 to 2019.
This book focuses on the tremendous development that has taken place recently in the field of of nondifferentiable nonconvex optimization. Coverage includes the formulation of optimality conditions using different kinds of generalized derivatives for set-valued mappings (such as, for example, the co-derivative of Mordukhovich), the opening of new applications (the calibration of water supply systems), and the elaboration of new solution algorithms (e.g., smoothing methods).
Linear complementarity problems (LCPs) have for many years been used in physics-based animation to model contact forces between rigid bodies in contact. More recently, LCPs have found their way into the realm of fluid dynamics. Here, LCPs are used to model boundary conditions with fluid-wall contacts. LCPs have also started to appear in deformable models and granular simulations. There is an increasing need for numerical methods to solve the resulting LCPs with all these new applications. This book provides a numerical foundation for such methods, especially suited for use in computer graphics. This book is mainly intended for a researcher/Ph.D. student/post-doc/professor who wants to study ...
Computer assisted surgery systems intraoperatively support the surgeon by providing information on the location of hidden risk and target structures during surgery. However, soft tissue deformations make intraoperative registration (and thus intraoperative navigation) difficult. In this work, a novel, biomechanics based approach for real-time soft tissue registration from sparse intraoperative sensor data such as stereo endoscopic images is presented to overcome this problem.
In many applications one is faced with the problem of inferring some functional relation between input and output variables from given data. Consider, for instance, the task of email spam filtering where one seeks to find a model which automatically assigns new, previously unseen emails to class spam or non-spam. Building such a predictive model based on observed training inputs (e.g., emails) with corresponding outputs (e.g., spam labels) is a major goal of machine learning. Many learning methods assume that these training data are governed by the same distribution as the test data which the predictive model will be exposed to at application time. That assumption is violated when the test d...
This volume contains the proceedings of the IMU/AMS Special Session on Nonlinear Analysis and Optimization, held from June 16-19, 2014, at the Second Joint International Meeting of the Israel Mathematical Union (IMU) and the American Mathematical Society (AMS), Bar-Ilan and Tel-Aviv Universities, Israel, and the Workshop on Nonlinear Analysis and Optimization, held on June 12, 2014, at the Technion-Israel Institute of Technology. The papers in this volume cover many different topics in Nonlinear Analysis and Optimization, including: Taylor domination property for analytic functions in the complex disk, mappings with upper integral bounds for p -moduli, multiple Fourier transforms and trigono...
This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization idea...