You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems by Pierre Bessiere, Christian Laugier and Roland Siegwart provides a unique collection of a sizable segment of the cognitive systems research community in Europe. It reports on contributions from leading academic institutions brought together within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS). This fourteen-chapter volume covers important research along two main lines: new probabilistic models and algorithms for perception and action, new probabilistic methodology and techniques for artefact conception and development. The work addresses key issues concerned with Bayesian programming, navigation, filtering, modelling and mapping, with applications in a number of different contexts.
This book constitutes the refereed proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI'99, held in Cambridge, UK, in September 1999. The 133 revised full papers presented were carefully reviewed and selected from a total of 213 full-length papers submitted. The book is divided into topical sections on data-driven segmentation, segmentation using structural models, image processing and feature detection, surfaces and shape, measurement and interpretation, spatiotemporal and diffusion tensor analysis, registration and fusion, visualization, image-guided intervention, robotic systems, and biomechanics and simulation.
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems by Pierre Bessiere, Christian Laugier and Roland Siegwart provides a unique collection of a sizable segment of the cognitive systems research community in Europe. It reports on contributions from leading academic institutions brought together within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS). This fourteen-chapter volume covers important research along two main lines: new probabilistic models and algorithms for perception and action, new probabilistic methodology and techniques for artefact conception and development. The work addresses key issues concerned with Bayesian programming, navigation, filtering, modelling and mapping, with applications in a number of different contexts.
This volume gathers together cutting-edge research from the Third Workshop on Algorithmic Foundations of Robotics and gives a solid overview of the state of the art in robot algorithms. The papers cover core problems in robotics, such as motion planning, sensor-based planning, manipulation, and assembly planning. They also examine the application o
This publication covers all the topics which are relevant to Advanced Robotics today, ranging from Systems Design to Reasoning and Planning. It is based on the Seventh International Symposium on Robotics Research held in Germany on October, 21 - 24th, 1995. The papers were written by specialists in the field from the United States, Europe, Japan, Australia and Canada. The editors, who also chaired this symposium, present the latest research results as well as new approaches to long standing problems. Robotics Research is a contribution to the emerging concepts, methods and tools that shape Robotics. The papers range from pure research reports to application-oriented studies. The topics covered include: manipulation, control, virtual reality, motion planning, 3D vision and industrial systems' issues.
The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also explored experimentally. It collects robotics contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the 14th ISER held on June 15-18, 2014 in Marrakech and Essaouira, Morocco. This present fourteenth edition of Experimental Robotics edited by M. Ani Hsieh, Oussama Khatib, and Vijay Kumar offers a collection of a broad range of topics in field and human-ce ntered robotics.
At the dawn of the new millennium, robotics is undergoing a major transfor- tion in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into the challenges of unstructured environments. Inter- ting with, assisting, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives. The goal of this new series of Springer Tracts in Advanced Robotics is to bring,inatimelyfashion,thelatestadvancesanddevelopmentsinroboticsonthe basisoftheirsigni?canceandquality.Itisourhopethatthegreaterdissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to f...
A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.