You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of thoroughly refereed papers presented at the 26th IFIP TC 7 Conference on System Modeling and Optimization, held in Klagenfurt, Austria, in September 2013. The 34 revised papers were carefully selected from numerous submissions. They cover the latest progress in a wide range of topics such as optimal control of ordinary and partial differential equations, modeling and simulation, inverse problems, nonlinear, discrete, and stochastic optimization as well as industrial applications.
The book presents the proceedings of the 23rd International Conference on Difference Equations and Applications, ICDEA 2017, held at the West University of Timișoara, Romania, under the auspices of the International Society of Difference Equations (ISDE), July 24 - 28, 2017. It includes new and significant contributions in the field of difference equations, discrete dynamical systems and their applications in various sciences. Disseminating recent studies and related results and promoting advances, the book appeals to PhD students, researchers, educators and practitioners in the field.
This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.
Contains papers from the 7th International Conference on Difference Equations held at Hunan University (Changsa, China), a satellite conference of ICM2002 Beijing. This book includes articles that cover stability, chaos, symmetries, boundary value problems and bifurcations for discrete dynamical systems, and difference-differential equations.
These proceedings of the 20th International Conference on Difference Equations and Applications cover the areas of difference equations, discrete dynamical systems, fractal geometry, difference equations and biomedical models, and discrete models in the natural sciences, social sciences and engineering. The conference was held at the Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (Hubei, China), under the auspices of the International Society of Difference Equations (ISDE) in July 2014. Its purpose was to bring together renowned researchers working actively in the respective fields, to discuss the latest developments, and to promote international cooperation on the theory and applications of difference equations. This book will appeal to researchers and scientists working in the fields of difference equations, discrete dynamical systems and their applications.
Difference Equations or Discrete Dynamical Systems is a diverse field which impacts almost every branch of pure and applied mathematics. Not surprisingly, the techniques that are developed vary just as broadly. No more so is this variety reflected than at the prestigious annual International Conference on Difference Equations and Applications. Organized under the auspices of the International Society of Difference Equations, the Conferences have an international attendance and a wide coverage of topics.The contributions from the conference collected in this volume invite the mathematical community to see a variety of problems and applications with one ingredient in common, the Discrete Dynamical System. Readers may also keep abreast of the many novel techniques and developments in the field.The special emphasis of the meeting was on mathematical biology and accordingly about half of the articles are in the related areas of mathematical ecology and mathematical medicine.
The Eighth International Conference on Difference Equations and Applications was held at Masaryk University in Brno, Czech Republic. This volume comprises refereed papers presented at this conference. These papers cover all important themes, conjectures, and open problems in the fields of discrete dynamical systems and ordinary and partial differen
This book presents the theory of dynamic equations on time scales and applications, providing an overview of recent developments in the foundations of the field as well as its applications. It discusses the recent results related to the qualitative properties of solutions like existence and uniqueness, stability, continuous dependence, controllability, oscillations, etc. • Presents cutting-edge research trends of dynamic equations and recent advances in contemporary research on the topic of time scales • Connects several new areas of dynamic equations on time scales with applications in different fields • Includes mathematical explanation from the perspective of existing knowledge of dynamic equations on time scales • Offers several new recently developed results, which are useful for the mathematical modeling of various phenomena • Useful for several interdisciplinary fields like economics, biology, and population dynamics from the perspective of new trends The text is for postgraduate students, professionals, and academic researchers working in the fields of Applied Mathematics