You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume provides a focused account of English Medium Instruction (EMI) in European higher education, considering issues of ideologies, policies, and practices. This is an essential book for academics, students, policy makers, and educators directly or indirectly implicated in the internationalization of European higher education.
This volume highlights the links between model theory and algebra. The work contains a definitive account of algebraically compact modules, a topic of central importance for both module and model theory. Using concrete examples, particular emphasis is given to model theoretic concepts, such as axiomizability. Pure mathematicians, especially algebraists, ring theorists, logicians, model theorists and representation theorists, should find this an absorbing and stimulating book.
The prototypical multilinear operation is multiplication. Indeed, every multilinear mapping can be factored through a tensor product. Apart from its intrinsic interest, the tensor product is of fundamental importance in a variety of disciplines, ranging from matrix inequalities and group representation theory, to the combinatorics of symmetric functions, and all these subjects appear in this book. Another attraction of multilinear algebra lies in its power to unify such seemingly diverse topics. This is done in the final chapter by means of the rational representations of the full linear group. Arising as characters of these representations, the classical Schur polynomials are one of the keys to unification. Prerequisites for the book are minimized by self-contained introductions in the early chapters. Throughout the text, some of the easier proofs are left to the exercises, and some of the more difficult ones to the references.
Model theory investigates mathematical structures by means of formal languages. So-called first-order languages have proved particularly useful in this respect. This text introduces the model theory of first-order logic, avoiding syntactical issues not too relevant to model theory. In this spirit, the compactness theorem is proved via the algebraically useful ultrsproduct technique (rather than via the completeness theorem of first-order logic). This leads fairly quickly to algebraic applications, like Malcev's local theorems of group theory and, after a little more preparation, to Hilbert's Nullstellensatz of field theory. Steinitz dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal theories. There is a final chapter on the models of the first-order theory of the integers as an abelian group. Both these topics appear here for the first time in a textbook at the introductory level, and are used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory.
This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Theories and results on hyperidentities have been published in various areas of the literature over the last 18 years. Hyperidentities and Clones integrates these into a coherent framework for the first time. The author also includes some applications of hyperidentities to the functional completeness problem in multiple-valued logic and extends the general theory to partial algebras. The last chapter contains exercises and open problems with suggestions for future work in this area of research. Graduate students and mathematical researchers will find Hyperidentities and Clones a thought-provoking and illuminating text that offers a unique opportunity to study the topic in one source.
This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.
Fourteen papers presented at the conference on [title], held at the International Conference and Research Center for Computer Science, Schloss Dagstuhl, June 1991, as well as a few others submitted by colleagues unable to attend, reflect the interplay between algebra, logic, and semantics of programming languages. Among the topics are a formal specification of PARLOG, synthesis of nondeterministic asynchronous automata, observable modules and power domain constructions, the Smyth-completion of a quasi-uniform space, current trends in the semantics of data flow, and a theory of unary pairfunctions. Annotation copyright by Book News, Inc., Portland, OR
An almost completely decomposable abelian (acd) group is an extension of a finite direct sum of subgroups of the additive group of rational numbers by a finite abelian group. Examples are easy to write and are frequently used but have been notoriously difficult to study and classify because of their computational nature. However, a general theory of acd groups has been developed and a suitable weakening of isomorphism, Lady's near-isomorphism, has been established as the rightconcept for studying acd groups. A number of important classes of acd groups has been successfully classified. Direct sum decompositions of acd groups are preserved under near-isomorphism and the well-known pathological decompositions can actually be surveyed in special cases.