You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
A collection of different lectures presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena. Representative examples of topics covered include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, stochastic resonance, nano-oscillators for generating microwave signals and related complex systems. A common theme among these and many other related lectures is to model, study, understand, and exploit the rich behavior exhibited by nonlinear systems to design and fabricate novel technologies with super...
Intro -- Contents -- Foreword -- Introduction -- 1. One morning in Parsons, Kansas -- 2. Los Angeles and the West Coast -- 3. Shanghai -- 4. I never heard such swinging music -- 5. Basie -- 6. In Uncle Sam's army -- 7. JATP and a trip to Europe -- 8. A new phase in my career -- 9. From New York to Australia -- 10. Humphrey Lyttelton and my English tours -- 11. Health problems -- 12. Still swinging -- Chronological discography by Bob Weir -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- Y -- Z
This contributed volume contains articles written by the plenary and invited speakers from the second international MATHEON Workshop 2015 that focus on applications of compressed sensing. Article authors address their techniques for solving the problems of compressed sensing, as well as connections to related areas like detecting community-like structures in graphs, curbatures on Grassmanians, and randomized tensor train singular value decompositions. Some of the novel applications covered include dimensionality reduction, information theory, random matrices, sparse approximation, and sparse recovery. This book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering, as well as other applied scientists exploring the potential applications for the novel methodology of compressed sensing. An introduction to the subject of compressed sensing is also provided for researchers interested in the field who are not as familiar with it.
The book presents high quality research papers presented at International Conference on Computational Intelligence (ICCI 2020) held at Indian Institute of Information Technology, Pune, India during 12–13 December, 2020. The topics covered are artificial intelligence, neural network, deep learning techniques, fuzzy theory and systems, rough sets, self-organizing maps, machine learning, chaotic systems, multi-agent systems, computational optimization ensemble classifiers, reinforcement learning, decision trees, support vector machines, hybrid learning, statistical learning. metaheuristics algorithms: evolutionary and swarm-based algorithms like genetic algorithms, genetic programming, differ...
Sparse grids have gained increasing interest in recent years for the numerical treatment of high-dimensional problems. Whereas classical numerical discretization schemes fail in more than three or four dimensions, sparse grids make it possible to overcome the “curse” of dimensionality to some degree, extending the number of dimensions that can be dealt with. This volume of LNCSE collects the papers from the proceedings of the second workshop on sparse grids and applications, demonstrating once again the importance of this numerical discretization scheme. The selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures, and the range of applications extends to uncertainty quantification settings and clustering, to name but a few examples.
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.