You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
These nine articles provide up-to-date surveys of topics of contemporary interest in combinatorics.
The first five chapters of this book form an introductory course in piece wise-linear topology in which no assumptions are made other than basic topological notions. This course would be suitable as a second course in topology with a geometric flavour, to follow a first course in point-set topology, andi)erhaps to be given as a final year undergraduate course. The whole book gives an account of handle theory in a piecewise linear setting and could be the basis of a first year postgraduate lecture or reading course. Some results from algebraic topology are needed for handle theory and these are collected in an appendix. In a second appen dix are listed the properties of Whitehead torsion which are used in the s-cobordism theorem. These appendices should enable a reader with only basic knowledge to complete the book. The book is also intended to form an introduction to modern geo metric topology as a research subject, a bibliography of research papers being included. We have omitted acknowledgements and references from the main text and have collected these in a set of "historical notes" to be found after the appendices.
None
In the famous paper of 1938, “A Contribution to the Mathematical Theory of Big Game Hunting”, written by Ralph Boas along with Frank Smithies, using the pseudonym H. Pétard, Boas describes sixteen methods for hunting a lion. This marvelous collection of Boas memorabilia contains not only the original article, but also several additional articles, as late as 1985, giving many further methods. But once you are through with lion hunting, you can hunt through the remainder of the book to find numerous gems by and about this remarkable mathematician. Not only will you find his biography of Bourbaki along with a description of his feud with the French mathematician, but also you will find a lucid discussion of the mean value theorem. There are anecdotes Boas told about many famous mathematicians, along with a large collection of his mathematical verses. You will find mathematical articles like a proof of the fundamental theorem of algebra and pedagogical articles giving Boas' views on making mathematics intelligible.