Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Combinatorial Geometry
  • Language: en
  • Pages: 376

Combinatorial Geometry

A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more

Algorithms in Combinatorial Geometry
  • Language: en
  • Pages: 423

Algorithms in Combinatorial Geometry

Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears....

Excursions into Combinatorial Geometry
  • Language: en
  • Pages: 428

Excursions into Combinatorial Geometry

siehe Werbetext.

Combinatorial Geometry and Its Algorithmic Applications
  • Language: en
  • Pages: 251

Combinatorial Geometry and Its Algorithmic Applications

"Based on a lecture series given by the authors at a satellite meeting of the 2006 International Congress of Mathematicians and on many articles written by them and their collaborators, this volume provides a comprehensive up-to-date survey of several core areas of combinatorial geometry. It describes the beginnings of the subject, going back to the nineteenth century (if not to Euclid), and explains why counting incidences and estimating the combinatorial complexity of various arrangements of geometric objects became the theoretical backbone of computational geometry in the 1980s and 1990s. The combinatorial techniques outlined in this book have found applications in many areas of computer ...

Combinatorial Geometry in the Plane
  • Language: en
  • Pages: 129

Combinatorial Geometry in the Plane

Advanced undergraduate-level text discusses theorems on topics restricted to the plane, such as convexity, coverings, and graphs. Two-part treatment begins with specific topics followed by an extensive selection of short proofs. 1964 edition.

Results and Problems in Combinatorial Geometry
  • Language: en
  • Pages: 132

Results and Problems in Combinatorial Geometry

  • Type: Book
  • -
  • Published: 1985-10-10
  • -
  • Publisher: CUP Archive

In this short book, the authors discuss three types of problems from combinatorial geometry: Borsuk's partition problem, covering convex bodies by smaller homothetic bodies, and the illumination problem. They show how closely related these problems are to each other. The presentation is elementary, with no more than high-school mathematics and an interest in geometry required to follow the arguments. Most of the discussion is restricted to two- and three-dimensional Euclidean space, though sometimes more general results and problems are given. Thus even the mathematically unsophisticated reader can grasp some of the results of a branch of twentieth-century mathematics that has applications in such disciplines as mathematical programming, operations research and theoretical computer science. At the end of the book the authors have collected together a set of unsolved and partially solved problems that a sixth-form student should be able to understand and even attempt to solve.

On the Foundations of Combinatorial Theory: Combinatorial Geometries
  • Language: en
  • Pages: 350

On the Foundations of Combinatorial Theory: Combinatorial Geometries

A major aim of this book is to present the theory of combinatorial geometry in a form accessible to mathematicians working in disparate subjects.

Geometric Graphs and Arrangements
  • Language: en
  • Pages: 179

Geometric Graphs and Arrangements

Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and partly very recent results from the intersection of geometry, graph theory and combinatorics.

Combinatorial Geometry with Applications to Field Theory
  • Language: en
  • Pages: 499

Combinatorial Geometry with Applications to Field Theory

This monograph is motivated with surveying mathematics and physics by CC conjecture, i.e., a mathematical science can be reconstructed from or made by combinatorialization. Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, gravitational field, quantum fields with their combinatorial generalization, also with discussions on fundamental questions in epistemology. All of these are valuable for researchers in combinatorics, topology, differential geometry, gravitational or quantum fields.