You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languag...
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languag...
Science is unique among the disciplines since it is inherently hands-on. However, the hands-on nature of science instruction also makes it uniquely challenging when teaching in virtual environments. How do we, as science teachers, deliver high-quality experiences in an online environment that leads to age/grade-level appropriate science content knowledge and literacy, but also collaborative experiences in the inquiry process and the nature of science? The expansion of online environments for education poses logistical and pedagogical challenges for early childhood and elementary science teachers and early learners. Despite digital media becoming more available and ubiquitous and increases in...
This handbook gathers in one volume the major research and scholarship related to multicultural science education that has developed since the field was named and established by Atwater in 1993. Culture is defined in this handbook as an integrated pattern of shared values, beliefs, languages, worldviews, behaviors, artifacts, knowledge, and social and political relationships of a group of people in a particular place or time that the people use to understand or make meaning of their world, each other, and other groups of people and to transmit these to succeeding generations. The research studies include both different kinds of qualitative and quantitative studies. The chapters in this volume reflect differing ideas about culture and its impact on science learning and teaching in different K-14 contexts and policy issues. Research findings about groups that are underrepresented in STEM in the United States, and in other countries related to language issues and indigenous knowledge are included in this volume.
Educating dual language learners (DLLs) and English learners (ELs) effectively is a national challenge with consequences both for individuals and for American society. Despite their linguistic, cognitive, and social potential, many ELsâ€"who account for more than 9 percent of enrollment in grades K-12 in U.S. schoolsâ€"are struggling to meet the requirements for academic success, and their prospects for success in postsecondary education and in the workforce are jeopardized as a result. Promoting the Educational Success of Children and Youth Learning English: Promising Futures examines how evidence based on research relevant to the development of DLLs/ELs from birth to age 21 can inform education and health policies and related practices that can result in better educational outcomes. This report makes recommendations for policy, practice, and research and data collection focused on addressing the challenges in caring for and educating DLLs/ELs from birth to grade 12.
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or...
More and more young people are learning about science, technology, engineering, and mathematics (STEM) in a wide variety of afterschool, summer, and informal programs. At the same time, there has been increasing awareness of the value of such programs in sparking, sustaining, and extending interest in and understanding of STEM. To help policy makers, funders and education leaders in both school and out-of-school settings make informed decisions about how to best leverage the educational and learning resources in their community, this report identifies features of productive STEM programs in out-of-school settings. Identifying and Supporting Productive STEM Programs in Out-of-School Settings draws from a wide range of research traditions to illustrate that interest in STEM and deep STEM learning develop across time and settings. The report provides guidance on how to evaluate and sustain programs. This report is a resource for local, state, and federal policy makers seeking to broaden access to multiple, high-quality STEM learning opportunities in their community.
The Handbook of Research on STEM Education represents a groundbreaking and comprehensive synthesis of research and presentation of policy within the realm of science, technology, engineering, and mathematics (STEM) education. What distinguishes this Handbook from others is the nature of integration of the disciplines that is the founding premise for the work – all chapters in this book speak directly to the integration of STEM, rather than discussion of research within the individual content areas. The Handbook of Research on STEM Education explores the most pressing areas of STEM within an international context. Divided into six sections, the authors cover topics including: the nature of ...
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the committee addresses the need for research...