You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Handbook of Communication Science and Biology charts the state of the art in the field, describing relevant areas of communication studies where a biological approach has been successfully applied. The book synthesizes theoretical and empirical development in this area thus far and proposes a roadmap for future research. As the biological approach to understanding communication has grown, one challenge has been the separate evolution of research focused on media use and effects and research focused on interpersonal and organizational communication, often with little intellectual conversation between the two areas. The Handbook of Communication Science and Biology is the only book to bridge the gap between media studies and human communication, spurring new work in both areas of focus. With contributions from the field’s foremost scholars around the globe, this unique book serves as a seminal resource for the training of the current and next generation of communication scientists, and will be of particular interest to media and psychology scholars as well.
This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.
This volume focuses on communibiology, which provides a theoretical framework for developing and testing biologically-oriented communication theory.
Most animal communication has evolved and now takes place in the context of a communication network, i.e. several signallers and receivers within communication range of each other. This idea follows naturally from the observation that many signals travel further than the average spacing between animals. This is self evidently true for long-range signals, but at a high density the same is true for short-range signals (e.g. begging calls of nestling birds). This book provides a current summary of research on communication networks and appraises future prospects. It combines information from studies of several taxonomic groups (insects to people via fiddler crabs, fish, frogs, birds and mammals) and several signalling modalities (visual, acoustic and chemical signals). It also specifically addresses the many areas of interface between communication networks and other disciplines (from the evolution of human charitable behaviour to the psychophysics of signal perception, via social behaviour, physiology and mathematical models).
This book introduces the concept of bacterial communication systems from a mathematical modeling point of view. It sheds light on the research undertaken in the last three decades, and the mathematical models that have been proposed to understand the underlying mechanism of such systems. These communication systems are related to quorum sensing mechanisms and quorum sensing regulated processes such as biofilm formation, gene expression, bioluminescence, swarming and virulence. The book further describes the phenomenon of noise, and discusses how noise plays a crucial role in gene expression and the quorum sensing circuit operationusing a set of tools like frequency domain analysis, power spectral density, stochastic simulation and the whitening effect. It also explores various aspects of synthetic biology (related to bacterial communication), such as genetic toggle switch, bistable gene regulatory networks, transcriptional repressor systems, pattern formation, synthetic cooperation, predator-prey synthetic systems, dynamical quorum sensing, synchronized quorum of genetic clocks, role of noise in synthetic biology, the Turing test and stochastic Turing test.
This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.
The reliability of animal signals is a central problem for evolutionary biologists. This text argues that it is maintained in several ways, relevant in different circumstances, and that biologists must learn to distinguish between them.