You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Serves as an introduction to the Kodaira-Spencer theory of deformations of complex structures. Based on lectures given by Kunihiko Kodaira at Stanford University in 1965-1966, this book gives the original proof of the Kodaira embedding theorem, showing that the restricted class of Kahler manifolds called Hodge manifolds is algebraic.
This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein-Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.
From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#
A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.
In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishi...
Kodaira is a Fields Medal Prize Winner. (In the absence of a Nobel prize in mathematics, they are regarded as the highest professional honour a mathematician can attain.) Kodaira is an honorary member of the London Mathematical Society. Affordable softcover edition of 1986 classic
This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from 'Stein to Weinstein') and its applications in the complex geometric world of Stein manifolds (the road 'back').
Complex manifolds are smooth manifolds endowed with coordinate charts that overlap holomorphically. They have deep and beautiful applications in many areas of mathematics. This book is an introduction to the concepts, techniques, and main results about complex manifolds (mainly compact ones), and it tells a story. Starting from familiarity with smooth manifolds and Riemannian geometry, it gradually explains what is different about complex manifolds and develops most of the main tools for working with them, using the Kodaira embedding theorem as a motivating project throughout. The approach and style will be familiar to readers of the author's previous graduate texts: new concepts are introdu...
Annotation This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject.
Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)