You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and chal...
Computational Photography combines plentiful computing, digital sensors, modern optics, actuators, probes, and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. This book provides a practical guide to topics in image capture and manipulation methods for generating compelling pictures for graphics, special effects, scene comprehension, and art. The computational techniques discussed cover topics in exploiting new ideas in manipulating optics, illumination, and sensors at time of capture. In addition, the authors describe sophisticated reconstruction procedures from direct and indirect pixel measurements that go well beyond the traditional digital darkroom experience.
A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be u...
Computational photography refers broadly to imaging techniques that enhance or extend the capabilities of digital photography. This new and rapidly developing research field has evolved from computer vision, image processing, computer graphics and applied optics—and numerous commercial products capitalizing on its principles have already appeared in diverse market applications, due to the gradual migration of computational algorithms from computers to imaging devices and software. Computational Photography: Methods and Applications provides a strong, fundamental understanding of theory and methods, and a foundation upon which to build solutions for many of today's most interesting and chal...
The introduction and recent advancements of computational photography have revolutionized the imaging industry. Computational photography is a combination of imaging techniques at the intersection of various fields such as optics, computer vision, and computer graphics. These methods enhance the capabilities of traditional digital photography by applying computational techniques both during and after the capturing process. This thesis targets two major subjects in this field: High Dynamic Range (HDR) image reconstruction and Light Field (LF) compressive capturing, compression, and real-time rendering. The first part of the thesis focuses on the HDR images that concurrently contain detailed i...
Collecting a set of classical and emerging methods previously unavailable in a single resource, Foundations of Computational Imaging: A Model-Based Approach is the first book to define a common foundation for the mathematical and statistical methods used in computational imaging. The book brings together a blend of research with applications in a variety of disciplines, including applied math, physics, chemistry, optics, and signal processing, to address a collection of problems that can benefit from a common set of methods. Readers will find basic techniques of model-based image processing, a comprehensive treatment of Bayesian and regularized image reconstruction methods, and an integrated...
Co design of imaging and processing
This book provides an in-depth exploration of scientific photography. Highlighting the best practices needed to make, distribute, and preserve scientific visual information using digital photographic methods and technologies, it offers solutions to some of the biggest challenges facing photographers. Written by a team of international, award-winning image makers with over 300 years of cumulative experience, this comprehensive resource explains the foundations used, the tools required, and the steps to needed for creating the optimal photograph in a range of environments and circumstances. Topics covered include: • ethical practices • aerial photography • close-up and macro photography • computational photography • field photography • geological photography • imaging with invisible spectrums • photographing small animals in captivity • time-based imaging • image processing in science Showcasing modern methods, this book equips readers with the skills needed to capture and process the best image possible. Designed for basic and intermediate photographers, Natural Science Imaging and Photography exists as an essential contemporary handbook.
This title is part of a two volume set that constitutes the refereed proceedings of the 8th Asian Conference on Computer Vision, ACCV 2007. Coverage in this volume includes shape and texture, face and gesture, camera networks, face/gesture/action detection and recognition, learning, motion and tracking, human pose estimation, matching, face/gesture/action detection and recognition, low level vision and phtometory, motion and tracking, human detection, and segmentation.