You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to pub...
Galois theory is one of the most beautiful subjects in mathematics, but it is heard to appreciate this fact fully without seeing specific examples. Numerous examples are therefore included throughout the text, in the hope that they will lead to a deeper understanding and genuine appreciation of the more abstract and advanced literature on Galois theory. This book is intended for beginning graduate students who already have some background in algebra, including some elementary theoryof groups, rings and fields. The expositions and proofs are intended to present Galois theory in as simple a manner as possible, sometimes at the expense of brevity. The book is for students and intends to make them take an active part in mathematics rather than merely read, nod their heads atappropriate places, skip the exercises, and continue on to the next section.
For years I have heard about buildings and their applications to group theory. I finally decided to try to learn something about the subject by teaching a graduate course on it at Cornell University in Spring 1987. This book is based on the not es from that course. The course started from scratch and proceeded at a leisurely pace. The book therefore does not get very far. Indeed, the definition of the term "building" doesn't even appear until Chapter IV. My hope, however, is that the book gets far enough to enable the reader to tadle the literat ure on buildings, some of which can seem very forbidding. Most of the results in this book are due to J. Tits, who originated the the ory of buildings. The main exceptions are Chapter I (which presents some classical material), Chapter VI (which prcsents joint work of F. Bruhat and Tits), and Chapter VII (which surveys some applications, due to var ious people). It has been a pleasure studying Tits's work; I only hope my exposition does it justice.
Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, an...
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
The twenty-six papers in this volume reflect the wide and still expanding range of Anil Nerode's work. A conference on Logical Methods was held in honor of Nerode's sixtieth birthday (4 June 1992) at the Mathematical Sciences Institute, Cornell University, 1-3 June 1992. Some of the conference papers are here, but others are from students, co-workers and other colleagues. The intention of the conference was to look forward, and to see the directions currently being pursued, in the development of work by, or with, Nerode. Here is a brief summary of the contents of this book. We give a retrospective view of Nerode's work. A number of specific areas are readily discerned: recursive equivalence ...
Many of the best researchers and writers in discrete mathematics come together in a volume inspired by Ron Graham.
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Curriculum can be defined in a variety of ways. It might be viewed as a body of knowledge, a product, or a process. Curricula can differ as they are conceptualized from various theoretical perspectives to address the needs of teachers, students, and the context of schooling. One reason to study curriculum is “to reveal the expectations, processes and outcomes of students’ school learning experiences that are situated in different cultural and system contexts. … further studies of curriculum practices and changes are much needed to help ensure the success of educational reforms in the different cultural and system contexts” (Kulm & Li, 2009, p. 709). This volume highlights internation...