You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something from nothing; this structure (modeled by binary addition and multiplication) can leave a historical...
"The Encyclopedia of Library and Information Science provides an outstanding resource in 33 published volumes with 2 helpful indexes. This thorough reference set--written by 1300 eminent, international experts--offers librarians, information/computer scientists, bibliographers, documentalists, systems analysts, and students, convenient access to the techniques and tools of both library and information science. Impeccably researched, cross referenced, alphabetized by subject, and generously illustrated, the Encyclopedia of Library and Information Science integrates the essential theoretical and practical information accumulating in this rapidly growing field."
We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something from nothing; this structure (modeled by binary addition and multiplication) can leave a historical record consisting of a growing universe of bit-strings. This book is specifically addressed to those interested in the foundations of particle physics, relativity, quantum mechanics, physical cosmology and the philosophy of science.
This is an introductory book on the general theory of relativity based partly on lectures given to students of M.Sc. Physics at my university. The book is divided into three parts. The ?rst part is a preliminary course on general relativity with minimum preparation. The second part builds the ma- ematical background and the third part deals with topics where mathematics developed in the second part is needed. The ?rst chapter gives a general background and introduction. This is f- lowed by an introduction to curvature through Gauss’ Theorema Egregium. This theorem expresses the curvature of a two-dimensional surface in terms of intrinsic quantitiesrelatedtothein?nitesimaldistancefunctionon...
Rowlands offers researchers in quantum, theoretical and high energy physics immediate access to simple but powerful techniques.
Outsider Scientists describes the transformative role played by “outsiders” in the growth of the modern life sciences. Biology, which occupies a special place between the exact and human sciences, has historically attracted many thinkers whose primary training was in other fields: mathematics, physics, chemistry, linguistics, philosophy, history, anthropology, engineering, and even literature. These outsiders brought with them ideas and tools that were foreign to biology, but which, when applied to biological problems, helped to bring about dramatic, and often surprising, breakthroughs. This volume brings together eighteen thought-provoking biographical essays of some of the most remarka...
It is widely assumed that there exist certain objects which can in no way be distinguished from each other, unless by their location in space or other reference-system. Some of these are, in a broad sense, 'empirical objects', such as electrons. Their case would seem to be similar to that of certain mathematical 'objects', such as the minimum set of manifolds defining the dimensionality of an R -space. It is therefore at first sight surprising that there exists no branch of mathematics, in which a third parity-relation, besides equality and inequality, is admitted; for this would seem to furnish an appropriate model for application to such instances as these. I hope, in this work, to show th...
Erwin Schrödinger's book What is Life? had a tremendous influence on the development of molecular biology, stimulating scientists such as Watson and Crick to explore the physical basis of life. Much of the appeal of Schrödinger's book lay in its approach to the central problems in biology - heredity and how organisms use energy to maintain order - from a physicist's perspective. At Trinity College, Dublin a number of outstanding scientists from a range of disciplines gathered to celebrate the fiftieth anniversary of What is Life? and following Schrödinger's example fifty years previously, presented their views on the current central problems in biology. The contributors to this volume include Stephen Jay Gould, Roger Penrose, Jared Diamond, Manfred Eigen, John Maynard Smith, Christien de Duve and Lewis Wolpert. This collection is essential reading for anyone interested in biology and its future.
Flux quantization experiments indicate that the carriers, Cooper pairs (pairons), in the supercurrent have charge magnitude 2e, and that they move independently. Josephson interference in a Superconducting Quantum Int- ference Device (SQUID) shows that the centers of masses (CM) of pairons move as bosons with a linear dispersion relation. Based on this evidence we develop a theory of superconductivity in conventional and mate- als from a unified point of view. Following Bardeen, Cooper and Schrieffer (BCS) we regard the phonon exchange attraction as the cause of superc- ductivity. For cuprate superconductors, however, we take account of both optical- and acoustic-phonon exchange. BCS started...
In the first century after its discovery, the electron has come to be a fundamental element in the analysis of physical aspects of nature. This book is devoted to the construction of a deductive theory of the electron, starting from first principles and using a simple mathematical tool, geometric analysis. Its purpose is to present a comprehensive theory of the electron to the point where a connection can be made with the main approaches to the study of the electron in physics. The introduction describes the methodology. Chapter 2 presents the concept of space-time-action relativity theory and in chapter 3 the mathematical structures describing action are analyzed. Chapters 4, 5, and 6 deal ...