You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Kinematic Chains and Machine Components Design covers a broad spectrum of critical machine design topics and helps the reader understand the fundamentals and apply the technologies necessary for successful mechanical design and execution. The inclusion of examples and instructive problems present the reader with a teachable computer-oriented text. Useful analytical techniques provide the practitioner and student with powerful tools for the design of kinematic chains and machine components.Kinematic Chains and Machine Components Design serves as a on-volume reference for engineers and students in mechanical engineering with applications for all engineers working in the fields of machine desig...
Modern technical advancements in areas such as robotics, multi-body systems, spacecraft, control, and design of complex mechanical devices and mechanisms in industry require the knowledge to solve advanced concepts in dynamics. “Mechanisms and Robots Analysis with MATLAB” provides a thorough, rigorous presentation of kinematics and dynamics. The book uses MATLAB as a tool to solve problems from the field of mechanisms and robots. The book discusses the tools for formulating the mathematical equations, and also the methods of solving them using a modern computing tool like MATLAB. An emphasis is placed on basic concepts, derivations, and interpretations of the general principles. The book is of great benefit to senior undergraduate and graduate students interested in the classical principles of mechanisms and robotics systems. Each chapter introduction is followed by a careful step-by-step presentation, and sample problems are provided at the end of every chapter.
Engineering mechanics involves the development of mathematical models of the physical world. Statics addresses the forces acting on and in mechanical objects and systems. Statics with MATLAB® develops an understanding of the mechanical behavior of complex engineering structures and components using MATLAB® to execute numerical calculations and to facilitate analytical calculations. MATLAB® is presented and introduced as a highly convenient tool to solve problems for theory and applications in statics. Included are example problems to demonstrate the MATLAB® syntax and to also introduce specific functions dealing with statics. These explanations are reinforced through figures generated with MATLAB® and the extra material available online which includes the special functions described. This detailed introduction and application of MATLAB® to the field of statics makes Statics with MATLAB® a useful tool for instruction as well as self study, highlighting the use of symbolic MATLAB® for both theory and applications to find analytical and numerical solutions
This book describes methods and algorithms for the analysis and design of kinematic systems.
Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly,allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support.
Machine Design Analysis with MATLAB is a highly practical guide to the fundamental principles of machine design which covers the static and dynamic behavior of engineering structures and components. MATLAB has transformed the way calculations are made for engineering problems by computationally generating analytical calculations, as well as providing numerical calculations. Using step-by-step, real world example problems, this book demonstrates how you can use symbolic and numerical MATLAB as a tool to solve problems in machine design. This book provides a thorough, rigorous presentation of machine design, augmented with proven learning techniques which can be used by students and practicing engineers alike.
The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is comprehensive, compact and durable. The Handbook covers major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanical engineering students with core coverage of nearly all relevant courses included. Also, anyone preparing for the engineering licensing examinations will find this han...
Based on a teach-yourself approach, the fundamentals of MATLAB are illustrated throughout with many examples from a number of different scientific and engineering areas, such as simulation, population modelling, and numerical methods, as well as from business and everyday life. Some of the examples draw on first-year university level maths, but these are self-contained so that their omission will not detract from learning the principles of using MATLAB.This completely revised new edition is based on the latest version of MATLAB. New chapters cover handle graphics, graphical user interfaces (GUIs), structures and cell arrays, and importing/exporting data. The chapter on numerical methods now includes a general GUI-driver ODE solver.* Maintains the easy informal style of the first edition* Teaches the basic principles of scientific programming with MATLAB as the vehicle* Covers the latest version of MATLAB
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.