Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

How to Prove It
  • Language: en
  • Pages: 401

How to Prove It

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

אישתתי
  • Language: en

אישתתי

  • Type: Book
  • -
  • Published: 1980
  • -
  • Publisher: Unknown

None

Mathematics and Mind
  • Language: en
  • Pages: 218

Mathematics and Mind

The essays in this volume investigate the conceptual foundations of mathematics illuminating the powers of the mind. Contributors include Alexander George, Michael Dummett, George Boolos, W.W. Tait, Wilfried Sieg, Daniel Isaacson, Charles Parsons, and Michael Hallett.

The Beginnings and Evolution of Algebra
  • Language: en
  • Pages: 200

The Beginnings and Evolution of Algebra

An examination of the evolution of one of the cornerstones of modern mathematics.

Calculus: A Rigorous First Course
  • Language: en
  • Pages: 737

Calculus: A Rigorous First Course

Designed for undergraduate mathematics majors, this rigorous and rewarding treatment covers the usual topics of first-year calculus: limits, derivatives, integrals, and infinite series. Author Daniel J. Velleman focuses on calculus as a tool for problem solving rather than the subject's theoretical foundations. Stressing a fundamental understanding of the concepts of calculus instead of memorized procedures, this volume teaches problem solving by reasoning, not just calculation. The goal of the text is an understanding of calculus that is deep enough to allow the student to not only find answers to problems, but also achieve certainty of the answers' correctness. No background in calculus is necessary. Prerequisites include proficiency in basic algebra and trigonometry, and a concise review of both areas provides sufficient background. Extensive problem material appears throughout the text and includes selected answers. Complete solutions are available to instructors.

Understanding Analysis
  • Language: en
  • Pages: 320

Understanding Analysis

  • Type: Book
  • -
  • Published: 2015-05-19
  • -
  • Publisher: Springer

This lively introductory text exposes the student to the rewards of a rigorous study of functions of a real variable. In each chapter, informal discussions of questions that give analysis its inherent fascination are followed by precise, but not overly formal, developments of the techniques needed to make sense of them. By focusing on the unifying themes of approximation and the resolution of paradoxes that arise in the transition from the finite to the infinite, the text turns what could be a daunting cascade of definitions and theorems into a coherent and engaging progression of ideas. Acutely aware of the need for rigor, the student is much better prepared to understand what constitutes a...

Introduction to Quantum Mechanics
  • Language: en
  • Pages: 512

Introduction to Quantum Mechanics

Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials.

Walks on Ordinals and Their Characteristics
  • Language: en
  • Pages: 327

Walks on Ordinals and Their Characteristics

The walks on ordinals and analysis of their characteristics is a subject matter started by the author some twenty years ago in order to disprove a particular extension of the Ramsey theorem. A further analysis has shown however that the resulting method is quite useful in detecting critical mathematical objects in contexts where only rough classifications are possible. The book gives a careful and comprehensive account of the method and gathers many of these applications in a unified and comprehensive manner.

Conics
  • Language: en
  • Pages: 428

Conics

This book engages the reader in a journey of discovery through a spirited discussion among three characters: philosopher, teacher, and student. Throughout the book, philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and examplehungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, workedout examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can selfstudy the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.

A Guide To Complex Variables
  • Language: en
  • Pages: 203

A Guide To Complex Variables

This is a book about complex variables that gives the reader a quick and accessible introduction to the key topics. While the coverage is not comprehensive, it certainly gives the reader a solid grounding in this fundamental area. There are many figures and examples to illustrate the principal ideas, and the exposition is lively and inviting. An undergraduate wanting to have a first look at this subject or a graduate student preparing for the qualifying exams, will find this book to be a useful resource.