Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Classification of the Finite Simple Groups, Number 3
  • Language: en
  • Pages: 446

The Classification of the Finite Simple Groups, Number 3

Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR

Finite Groups
  • Language: en
  • Pages: 546

Finite Groups

"The Classification Theorem is one of the main achievements of 20th century mathematics, but its proof has not yet been completely extricated from the journal literature in which it first appeared. This is the second volume in a series devoted to the presentation of a reorganized and simplified proof of the classification of the finite simple groups. The authors present (with either proof or reference to a proof) those theorems of abstract finite group theory, which are fundamental to the analysis in later volumes in the series. This volume provides a relatively concise and readable access to the key ideas and theorems underlying the study of finite simple groups and their important subgroup...

The Unreal Life of Oscar Zariski
  • Language: en
  • Pages: 203

The Unreal Life of Oscar Zariski

Oscar Zariski’s work in mathematics permanently altered the foundations of algebraic geometry. The powerful tools he forged from the ideas of modern algebra allowed him to penetrate classical problems with an unaccustomed depth, and brought new rigor to the intuitive proofs of the Italian School. The students he trained at Hopkins, and later at Harvard, are among the foremost mathematicians of our time. While what he called his “real life” is recorded in almost a hundred books and papers, this story of his “unreal life” is based upon Parikh’s interviews with his family, colleagues, and students, and on his own memories from a series of tape-recorded interviews made a few years before his death in 1986. First published in 1991, The Unreal Life of Oscar Zariski was highly successful and widely praised, but has been out of print for many years. Springer is proud to make this book available again, introducing Oscar Zariski to a new generation of mathematicians.

Finite Simple Groups
  • Language: en
  • Pages: 339

Finite Simple Groups

In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in ...

First Trilogy about Sylow Theory in Locally Finite Groups
  • Language: en
  • Pages: 266

First Trilogy about Sylow Theory in Locally Finite Groups

Part 1 (ISBN 978-3-7568-0801-4) of the Trilogy is based on the BoD-Book "Characterising locally finite groups satisfying the strong Sylow Theorem for the prime p - Revised edition" (see ISBN 978-3-7562-3416-5). The First edition of Part 1 (see ISBN 978-3-7543-6087-3) removes the highlights in light green of the Revised edition, adds 14 pages to the AGTA paper and 10 pages to the Revised edition. It includes Reference [11] resp. [10] as Appendix 1 resp. Appendix 2 and calls to mind Professor Otto H. Kegel's contribution to the conference Ischia Group Theory 2016. The Second edition introduces a uniform page numbering, adds page numbers to the appendices, improves 19 pages, adds Pages 109 to 1...

A Century of Mathematics in America
  • Language: en
  • Pages: 490

A Century of Mathematics in America

Part of the "History of Mathematics" series, this book presents a variety of perspectives on the political, social, and mathematical forces that have shaped the American mathematical community.

The Classification of Finite Simple Groups
  • Language: en
  • Pages: 493

The Classification of Finite Simple Groups

Never before in the history of mathematics has there been an individual theorem whose proof has required 10,000 journal pages of closely reasoned argument. Who could read such a proof, let alone communicate it to others? But the classification of all finite simple groups is such a theorem-its complete proof, developed over a 30-year period by about 100 group theorists, is the union of some 500 journal articles covering approximately 10,000 printed pages. How then is one who has lived through it all to convey the richness and variety of this monumental achievement? Yet such an attempt must be made, for without the existence of a coherent exposition of the total proof, there is a very real danger that it will gradually become lost to the living world of mathematics, buried within the dusty pages of forgotten journals. For it is almost impossible for the uninitiated to find the way through the tangled proof without an experienced guide; even the 500 papers themselves require careful selection from among some 2,000 articles on simple group theory, which together include often attractive byways, but which serve only to delay the journey.

Invariant Theory of Finite Groups
  • Language: en
  • Pages: 388

Invariant Theory of Finite Groups

The questions that have been at the center of invariant theory since the 19th century have revolved around the following themes: finiteness, computation, and special classes of invariants. This book begins with a survey of many concrete examples chosen from these themes in the algebraic, homological, and combinatorial context. In further chapters, the authors pick one or the other of these questions as a departure point and present the known answers, open problems, and methods andtools needed to obtain these answers. Chapter 2 deals with algebraic finiteness. Chapter 3 deals with combinatorial finiteness. Chapter 4 presents Noetherian finiteness. Chapter 5 addresses homological finiteness. C...

Finite Groups Which Are Almost Groups of Lie Type in Characteristic $mathbf {p}$
  • Language: en
  • Pages: 194
Mirror Symmetry and Algebraic Geometry
  • Language: en
  • Pages: 498

Mirror Symmetry and Algebraic Geometry

Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.