You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduction to Global Optimization Exploiting Space-Filling Curves provides an overview of classical and new results pertaining to the usage of space-filling curves in global optimization. The authors look at a family of derivative-free numerical algorithms applying space-filling curves to reduce the dimensionality of the global optimization problem; along with a number of unconventional ideas, such as adaptive strategies for estimating Lipschitz constant, balancing global and local information to accelerate the search. Convergence conditions of the described algorithms are studied in depth and theoretical considerations are illustrated through numerical examples. This work also contains a ...
This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 14, held in Athens, Greece, in May 2020. The 37 full papers presented together with one invited paper have been carefully reviewed and selected from 75 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components. Due to the COVID-19 pandemic, LION 14 was not held as a physical meeting.
This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Conference on Learning and Intelligent Optimization, LION 12, held in Kalamata, Greece, in June 2018. The 28 full papers and 12 short papers presented have been carefully reviewed and selected from 62 submissions. The papers explore the advanced research developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning.
This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 15, held in Athens, Greece, in June 2021. The 30 full papers presented have been carefully reviewed and selected from 35 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components.
This book constitutes the thoroughly refereed pChania, Crete, Greece, in May 2019. The 38 full papers presented have been carefully reviewed and selected from 52 submissions. The papers focus on advancedresearch developments in such interconnected fields as mathematical programming, global optimization, machine learning, and artificial intelligence and describe advanced ideas, technologies, methods, and applications in optimization and machine learning.
This book constitutes the refereed proceedings of the 17th International Conference on Learning and Intelligent Optimization, LION-17, held in Nice, France, during June 4–8, 2023. The 40 full papers presented have been carefully reviewed and selected from 83 submissions. They focus on all aspects of unleashing the potential of integrating machine learning and optimization approaches, including automatic heuristic selection, intelligent restart strategies, predict-then-optimize, Bayesian optimization, and learning to optimize.
This two-volume set, LNCS 13163-13164, constitutes the refereed proceedings of the 7th International Conference on Machine Learning, Optimization, and Data Science, LOD 2021, together with the first edition of the Symposium on Artificial Intelligence and Neuroscience, ACAIN 2021. The total of 86 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 215 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
This book contains Proceedings of the International Conference and Summer School NUMTA-2013 “Numerical Computations: Theory and Algorithms”. The Conference is organized jointly by the University of Calabria, Italy, and by the N.I. Lobachevsky State University of Nizhni Novgorod, Russia in cooperation with the Society for Industrial and Applied Mathematics (SIAM), USA. The goal of the Conference is to create a multidisciplinary round table for an open discussion on numerical modeling nature by using traditional and emerging computational paradigms. The Conference discusses all aspects of numerical computations and modeling from foundations and philosophy to advanced numerical techniques. New technological challenges and fundamental ideas from theoretical computer science, linguistic, logic, set theory, and philosophy meet requirements and new fresh applications from physics, chemistry, biology, and economy.
None