You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A comprehensive introduction to the emerging research in information-theoretic radar signal processing Signal processing plays a pivotal role in radar systems to estimate, visualize, and leverage useful target information from noisy and distorted radar signals, harnessing their spatial characteristics, temporal features, and Doppler signatures. The burgeoning applications of information theory in radar signal processing provide a distinct perspective for tackling diverse challenges, including optimized waveform design, performance bound analysis, robust filtering, and target enumeration. Information-Theoretic Radar Signal Processing provides a comprehensive introduction to radar signal proce...
This book is intended to fill the gap between the ""ideal precision"" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory and Chapter 3 reviews random processes to support the noise model of quantization error. Chapter 4 ...
A typical undergraduate electrical engineering curriculum incorporates a signals and systems course. The widely used approach for the laboratory component of such courses involves the utilization of MATLAB to implement signals and systems concepts. This book presents a newly developed laboratory paradigm where MATLAB codes are made to run on smartphones, which most students already possess. This smartphone-based approach enables an anywhere-anytime platform for students to conduct signals and systems experiments. This book covers the laboratory experiments that are normally covered in signals and systems courses and discusses how to run MATLAB codes for these experiments on smartphones, thus enabling a truly mobile laboratory environment for students to learn the implementation aspects of signals and systems concepts. A zipped file of the codes discussed in the book can be acquired via the website http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodes.
Real-time or applied digital signal processing courses are offered as follow-ups to conventional or theory-oriented digital signal processing courses in many engineering programs for the purpose of teaching students the technical know-how for putting signal processing algorithms or theory into practical use. These courses normally involve access to a teaching laboratory that is equipped with hardware boards, in particular DSP boards, together with their supporting software. A number of textbooks have been written discussing how to achieve real-time implementation on these hardware boards. This book discusses how smartphones can be used as hardware boards for real-time implementation of signa...
This book is designed for use as a textbook for a one semester Signals and Systems class. It is sufficiently user friendly to be used for self study as well. It begins with a gentle introduction to the idea of abstraction by looking at numbers—the one highly abstract concept we use all the time. It then introduces some special functions that are useful for analyzing signals and systems. It then spends some time discussing some of the properties of systems; the goal being to introduce the idea of a linear time-invariant system which is the focus of the rest of the book. Fourier series, discrete and continuous time Fourier transforms are introduced as tools for the analysis of signals. The c...
This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets a...
The book is an edited collection of research articles covering the current state of sonar systems, the signal processing methods and their applications prepared by experts in the field. The first section is dedicated to the theory and applications of innovative synthetic aperture, interferometric, multistatic sonars and modeling and simulation. Special section in the book is dedicated to sonar signal processing methods covering: passive sonar array beamforming, direction of arrival estimation, signal detection and classification using DEMON and LOFAR principles, adaptive matched field signal processing. The image processing techniques include: image denoising, detection and classification of...
A typical undergraduate electrical engineering curriculum incorporates a signals and systems course. The widely used approach for the laboratory component of such courses involves the utilization of MATLAB to implement signals and systems concepts. This book presents a newly developed laboratory paradigm where MATLAB codes are made to run on smartphones which are possessed by nearly all students. As a result, this laboratory paradigm provides an anywhere-anytime hardware platform or processing board for students to learn implementation aspects of signals and systems concepts. The book covers the laboratory experiments that are normally covered in signals and systems courses and discusses how to run MATLAB codes for these experiments as apps on both Android and iOS smartphones, thus enabling a truly mobile laboratory paradigm. A zipped file of the codes discussed in the book can be acquired via the website http://sites.fastspring.com/bookcodes/product/SignalsSystemsBookcodesThirdEdition
Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed.
This book organizes principles and methods of signal processing and machine learning into the framework of coherence. The book contains a wealth of classical and modern methods of inference, some reported here for the first time. General results are applied to problems in communications, cognitive radio, passive and active radar and sonar, multi-sensor array processing, spectrum analysis, hyperspectral imaging, subspace clustering, and related. The reader will find new results for model fitting; for dimension reduction in models and ambient spaces; for detection, estimation, and space-time series analysis; for subspace averaging; and for uncertainty quantification. Throughout, the transforma...