You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Boys' Life is the official youth magazine for the Boy Scouts of America. Published since 1911, it contains a proven mix of news, nature, sports, history, fiction, science, comics, and Scouting.
Renowned physicist and mathematician Freeman Dyson is famous for his work in quantum mechanics, nuclear weapons policy and bold visions for the future of humanity. In the 1940s, he was responsible for demonstrating the equivalence of the two formulations of quantum electrodynamics — Richard Feynman's diagrammatic path integral formulation and the variational methods developed by Julian Schwinger and Sin-Itiro Tomonoga — showing the mathematical consistency of QED.This invaluable volume comprises the legendary, never-before-published, lectures on quantum electrodynamics first given by Dyson at Cornell University in 1951. The late theorist Edwin Thompson Jaynes once remarked “For a generation of physicists they were the happy medium: clearer and motivated than Feynman, and getting to the point faster than Schwinger”.Future generations of physicists are bound to read these lectures with pleasure, benefiting from the lucid style that is so characteristic of Dyson's exposition.
Sidney Coleman (1937-2007) was a renowned theoretical physicist, who taught for more than forty years at Harvard University. He contributed critical work on quantum field theory, high-energy particle physics, and cosmology. He was also a remarkably effective teacher who introduced generations of physicists to quantum field theory, mentoring several leading members in the field. His sense of humor and wit became legendary. This selection of his previously unpublished correspondence illuminates changes in theoretical physics and in academic life over the course of Coleman's illustrious career.The letters show the depth of Coleman's activities and interests, including science fiction, space travel, and the US counter culture.The volume also includes Coleman's legendary lecture 'Quantum Mechanics in Your Face.'
This student-friendly text builds on familiar physics to illuminate the structure of general relativity for a junior/senior level course.
"The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks. In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book"--Publisher's description
Renowned physicist and mathematician Freeman Dyson is famous for his work in quantum mechanics, nuclear weapons policy and bold visions for the future of humanity. In the 1940s, he was responsible for demonstrating the equivalence of the two formulations of quantum electrodynamics — Richard Feynman's diagrammatic path integral formulation and the variational methods developed by Julian Schwinger and Sin-Itiro Tomonoga — showing the mathematical consistency of QED.This invaluable volume comprises the legendary lectures on quantum electrodynamics first given by Dyson at Cornell University in 1951. The late theorist Edwin Thompson Jaynes once remarked, “For a generation of physicists they...
With the great progress in numerical methods and the speed of the modern personal computer, if you can formulate the correct physics equations, then you only need to program a few lines of code to get the answer. Where other books on computational physics dwell on the theory of problems, this book takes a detailed look at how to set up the equations and actually solve them on a PC.Focusing on popular software package Mathematica, the book offers undergraduate student a comprehensive treatment of the methodology used in programing solutions to equations in physics.
Serious and accessible—finally the special relativity course book that both physics majors and lifelong learners deserve. Special relativity challenges one’s physical intuition of space, time, matter, and energy in a way that few other topics in physics do. Yet the subject is often treated as an extra in undergraduate courses—something to be picked up in a few random lectures and presented as a combination of geometric and logical puzzles (seemingly with the premise of getting the novice student to concede that Einstein was a genius and that the universe is weird). But special relativity is absolutely fundamental to modern physics. It is the canvas on which electromagnetism, particle p...
A new edition of a classic textbook, introducing students to electricity and magnetism, featuring SI units and additional examples and problems.