You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book is the first publication to widely introduce the contributions of nanoarchitectonics to the development of functional materials and systems. The book opens up pathways to novel nanotechnology based on bottom-up techniques. In fields of nanotechnology, theoretical and practical limitations are expected in the bottom-up nanofabrication process. Instead, some supramolecular processes for nano- and microstructure formation including molecular recognition, self-assembly, and template synthesis have gained great attention as novel key technologies to break through expected limitations in current nanotechnology. This volume describes future images of nanotechnology and related materials and device science as well as practical applications for energy and biotechnology. Readers including specialists, non-specialists, graduate students, and undergraduate students can focus on the parts of the book that interest and concern them most. Target fields include materials chemistry, organic chemistry, physical chemistry, nanotechnology, and even biotechnology.
The quantum transport theory, which dates back to the time of the Landauer theory in the field of mesoscopic physics, is now expanding its power on materials science and chemistry by earning chemical accuracy and physical reality and has become a new subject of non-equilibrium quantum transport theory for charge and heat at nanoscale. This growing subject invites cross-disciplinary developments, for example, the local heating theory developed earlier was examined and applied to the self-heating problem in the field of semiconductor- and nanoelectronic-device physics. This book compiles 25 key published papers to provide readers with convenient and comprehensive access to the important results and developments in the field. The book will appeal to a wide range of readers from varied backgrounds, especially those involved in charge- and/or heat-transport problems that widely spread over various subjects in materials science, chemistry, electric engineering, and condensed matter physics.
These Proceedings, consisting of Parts A and B, contain the edited versions of most of the papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation held at the University of California San Diego, in La Jolla, California on July 19- July 24, 1992. The Review was organized by the Center for NDE at Iowa State University and the Ames Laboratory of the USDOE in cooperation with a number of organizations including the Air Force Wright Laboratory Materials Directorate, the American Society for Nondestructive Testing, the Center for NDE at Johns Hopkins University, the Department of Energy, the Federal Aviation Administration, the National Institute of Standards an...
The widespread availability of quiet, diesel electric submarines and inexpensive mines is posing a growing threat to global access by the U.S. Navy. In response, the Navy has expanded its undersea warfare efforts and put particular emphasis on the potential for new distributed remote sensing (DRS) approaches. To assist with this effort, the former Chief of Naval Operations requested the NRC to conduct an assessment of DRS for naval undersea warfare. This report provides a clear, near-term path by which useful DRS systems can be applied rapidly to pressing naval USW problems, and by which ongoing science and technology efforts can be directed toward the most useful options. The report contains information as described in 5 U.S.C. 552(b) and therefore could not be released to the public in its entirety. The public version consists of the front matter and executive summary.