Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health
  • Language: en
  • Pages: 276

Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health

This book constitutes the refereed proceedings of the Third MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2021, and the First MICCAI Workshop on Affordable Healthcare and AI for Resource Diverse Global Health, FAIR 2021, held in conjunction with MICCAI 2021, in September/October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DART 2021 accepted 13 papers from the 21 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains. For FAIR 2021, 10 papers from 17 submissions were accepted for publication. They focus on Image-to-Image Translation particularly for low-dose or low-resolution settings; Model Compactness and Compression; Domain Adaptation and Transfer Learning; Active, Continual and Meta-Learning.

7th URV Doctoral Workshop in Computer Science and Mathematics
  • Language: en
  • Pages: 67

7th URV Doctoral Workshop in Computer Science and Mathematics

This book of proceedings gathers the contributions presented at the 7th URV Doctoral Workshop in Computer Science and Mathematics. The main aim of this workshop is to promote the dissemination of the ideas, methods and results that are developed in the Doctoral Thesis of the students of this doctorate program, and to promote the knowledge sharing, collaboration and discussion between their respective research groups.

Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health
  • Language: en
  • Pages: 215

Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health

This book constitutes the refereed proceedings of the Third MICCAI Workshop on Distributed, Collaborative, and Federated Learning, DeCaF 2022, and the Second MICCAI Workshop on Affordable AI and Healthcare, FAIR 2022, held in conjunction with MICCAI 2022, in Singapore in September 2022. FAIR 2022 was held as a hybrid event. DeCaF 2022 accepted 14 papers from the 18 submissions received. The workshop aims at creating a scientific discussion focusing on the comparison, evaluation, and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases or where information privacy is a priority. For FAIR 2022, 4 papers from 9 submissions were accepted for publication. The topics of the accepted submissions focus on deep ultrasound segmentation, portable OCT image quality enhancement, self-attention deep networks and knowledge distillation in low-regime setting.

Intelligent Systems and Computer Technology
  • Language: en
  • Pages: 672

Intelligent Systems and Computer Technology

  • Type: Book
  • -
  • Published: 2020-12-15
  • -
  • Publisher: IOS Press

Recent developments in soft-computation techniques have paved the way for handling huge volumes of data, thereby bringing about significant changes and technological advancements. This book presents the proceedings of the 3rd International Conference on Emerging Current Trends in Computing & Expert Technology (COMET 2020), held at Panimalar Engineering College, Chennai, India on 6 and 7 March 2020. The aim of the book is to disseminate cutting-edge developments taking place in the technological fields of intelligent systems and computer technology, thereby assisting researchers and practitioners from both institutions and industry to upgrade their knowledge of the latest developments and eme...

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
  • Language: en
  • Pages: 711

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in m...

Artificial Intelligence Technologies for Computational Biology
  • Language: en
  • Pages: 339

Artificial Intelligence Technologies for Computational Biology

  • Type: Book
  • -
  • Published: 2022-11-10
  • -
  • Publisher: CRC Press

This text emphasizes the importance of artificial intelligence techniques in the field of biological computation. It also discusses fundamental principles that can be applied beyond bio-inspired computing. It comprehensively covers important topics including data integration, data mining, machine learning, genetic algorithms, evolutionary computation, evolved neural networks, nature-inspired algorithms, and protein structure alignment. The text covers the application of evolutionary computations for fractal visualization of sequence data, artificial intelligence, and automatic image interpretation in modern biological systems. The text is primarily written for graduate students and academic ...

Deep Learning for Biomedical Data Analysis
  • Language: en
  • Pages: 358

Deep Learning for Biomedical Data Analysis

This book is the first overview on Deep Learning (DL) for biomedical data analysis. It surveys the most recent techniques and approaches in this field, with both a broad coverage and enough depth to be of practical use to working professionals. This book offers enough fundamental and technical information on these techniques, approaches and the related problems without overcrowding the reader's head. It presents the results of the latest investigations in the field of DL for biomedical data analysis. The techniques and approaches presented in this book deal with the most important and/or the newest topics encountered in this field. They combine fundamental theory of Artificial Intelligence (...

Computer Aided Intervention and Diagnostics in Clinical and Medical Images
  • Language: en
  • Pages: 292

Computer Aided Intervention and Diagnostics in Clinical and Medical Images

  • Type: Book
  • -
  • Published: 2019-01-01
  • -
  • Publisher: Springer

This book is a compendium of the ICCMIA 2018 proceedings, which provides an ideal reference for all medical imaging researchers and professionals to explore innovative methods and analyses on imaging technologies for better prospective patient care. This work serves as an exclusive source for new computer assisted clinical and medical developments in imaging diagnosis, intervention and analysis. It includes articles on computer assisted medical scanning techniques, computer-aided diagnosis, robotic surgery and imaging, imaging genomics, clinically-oriented imaging physics and informatics, augmented-reality medical visualization, imaging modalities, computerized radiology, oncology, and surgery. Moreover, information on non-medical imaging that has medical applications such as multi-photon microscopy and confocal, photoacoustic imaging, optical microendoscope, infra-red radiation, and other imaging modalities is also represented.

Classification in BioApps
  • Language: en
  • Pages: 453

Classification in BioApps

  • Type: Book
  • -
  • Published: 2017-11-10
  • -
  • Publisher: Springer

This book on classification in biomedical image applications presents original and valuable research work on advances in this field, which covers the taxonomy of both supervised and unsupervised models, standards, algorithms, applications and challenges. Further, the book highlights recent scientific research on artificial neural networks in biomedical applications, addressing the fundamentals of artificial neural networks, support vector machines and other advanced classifiers, as well as their design and optimization. In addition to exploring recent endeavours in the multidisciplinary domain of sensors, the book introduces readers to basic definitions and features, signal filters and processing, biomedical sensors and automation of biomeasurement systems. The target audience includes researchers and students at engineering and medical schools, researchers and engineers in the biomedical industry, medical doctors and healthcare professionals.

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017
  • Language: en
  • Pages: 739

Medical Image Computing and Computer Assisted Intervention − MICCAI 2017

  • Type: Book
  • -
  • Published: 2017-09-03
  • -
  • Publisher: Springer

The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.