You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides introductory information on carbon fiber composites, including polymer-matrix, metal matrix, carbon-matrix, ceramic-matrix, and hybrid composites. Places emphasis on materials rather than mechanics.
The first edition of "Composite Materials" introduced a new way of looking at composite materials. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.
The field of functional materials has grown tremendously over the last 5-10 years, due to its richness in both science and applications. This timely compendium covers the science and applications of functional materials in a comprehensive manner that is suitable for readers that do not have background on the electrical, dielectric, electromagnetic, optical and magnetic properties of materials. Prior knowledge of quantum mechanics or solid state physics is also not required. Only a semester of introductory materials science suffices.This unique reference text is tutorial in style and includes numerous example problems, which are lacking in several competing books in the market.The must-have volume benefits undergraduate and graduate students in materials science, mechanical engineering, electrical engineering and aerospace engineering.
Composite Materials is a modern reference book, tutorial in style, covering functions of composites relating to applications in electronic packaging, thermal management, smart structures and other timely technologies rarely covered in existing books on composites. It also treats materials with polymer, metal, cement, carbon and ceramics matrices, contrasting with others that emphasise polymer-matrix composites. This functional approach will be useful to both practitioners and students. A good selection of example problems, solutions and figures, together with a new and vibrant approach, provides a valuable reference source for all engineers working with composite materials.
Carbon Composites: Composites with Carbon Fibers, Nanofibers, and Nanotubes, Second Edition, provides the reader with information on a wide range of carbon fiber composites, including polymer-matrix, metal-matrix, carbon-matrix, ceramic-matrix and cement-matrix composites. In contrast to other books on composites, this work emphasizes materials rather than mechanics. This emphasis reflects the key role of materials science and engineering in the development of composite materials. The applications focus of the book covers both the developing range of structural applications for carbon fiber composites, including military and civil aircraft, automobiles and construction, and non-structural ap...
'The field of carbon materials is huge and often difficult to comprehend, but this book is easy to read and methodically covers the subject, including presenting materials properties and performance data with clear illustrations and graphs. References include relevant older and up-to-date sources of information. The book is tutorial style in nature and is an excellent resource for senior undergraduates, graduate students, researchers, and anyone who wants to learn more about carbon and incorporate carbon materials into new applications.'MRS BulletinElemental carbon materials take numerous forms including graphite, carbon fiber, carbon nanotube, graphene, carbon black, activated carbon, fulle...
Materials are the foundation of technology. As such, most universities provide engineering undergraduates with the fundamental concepts of materials science, including crystal structures, imperfections, phase diagrams, materials processing, and materials properties. Few, however, offer the practical, applications-oriented background that their stud
Unique in its focus on functional properties, this book examines the resistive, piezoresistive, thermoelectric, and electromagnetic behavior of multifunctional cement-based materials for reduced cost, improved durability and maintenance, and optimization of various structural designs. The author analyzes cement-based compounds for enhancing a wide-range of structures, including buildings, bridges, highways, automobiles, and aircrafts, exploring characteristics such as vibration damping, strain sensing, electromagnetic and magnetic shielding, electrical conductivity, and thermal insulation for improved structure stability and performance.
Composite materials are traditionally designed for the mechanical properties, due to their structural applications. However, composite materials are increasingly used in non-structural applications, such as electronic packaging and thermal management. Moreover, structural composite materials that are multifunctional are increasingly needed, due to the demand of smart structures and the importance of weight saving. As a consequence, structural materials that can provide electronic functions are needed. Thus, electronic functions are desirable for both non-structural and structural composite materials.
The Hungarian born mathematical genius, John von Neumann, was undoubtedly one of the greatest and most influential scientific minds of the 20th century. Von Neumann made fundamental contributions to Computing and he had a keen interest in Dynamical Systems, specifically Hydrodynamic Turbulence. This book, offering a state-of-the-art collection of papers in computational dynamical systems, is dedicated to the memory of von Neumann. Including contributions from J E Marsden, P J Holmes, M Shub, A Iserles, M Dellnitz and J Guckenheimer, this book offers a unique combination of theoretical and applied research in areas such as geometric integration, neural networks, linear programming, dynamical astronomy, chemical reaction models, structural and fluid mechanics.