You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutro...
In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
A collection of papers from multiple authors. In 2019 and 2020 Smarandache [1, 2, 3, 4] generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our real world. In classical algebraic structures, all axioms are 100%, and all operations are 100% well-defined, but in real life, in many cases these restrictions are too harsh, since in our world we have things that only partially verify some laws or some operations. Using the process of NeutroSophication of a classical algebraic structure we produce a NeutroAlgebra, while the process of AntiSophication of a classical algebraic structure produces an AntiAlgebra.
A bipolar neutrosophic set (BNS) is an instance of a single- valued neutrosophic set. To do this, we firstly propose distance measure between two BNSs is defined by the full consideration of positive membership function and negative membership function for the forward and backward differences. Then the similarity measure, the entropy measure and the index of distance are also presented. Then, two examples are shown to verify the feasibility of the proposed method. Finally, the decision results of different similarity measures demonstrate the practicality and effectiveness of the developed method in this paper.
Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are proposed in the literature in a short period of time. Neutrosophic set has been an important tool in the application of various areas such as data mining, decision making, e-learning, engineering, medicine, social science, and some more.
This book explores the advancement of uncertain combinatorics through innovative methods such as graphization, hyperization, and uncertainization, incorporating concepts from fuzzy, neutrosophic, soft, and rough set theory, among others. Combinatorics and set theory are fundamental mathematical disciplines that focus on counting, arrangement, and the study of collections under specified rules. While combinatorics excels at solving problems involving uncertainty, set theory has expanded to include advanced concepts like fuzzy and neutrosophic sets, which are capable of modeling complex real-world uncertainties by accounting for truth, indeterminacy, and falsehood. These developments intersect...
In this chapter, a new type Hyper groups are defined, corresponding basic properties and examples for new type Hyper groups are given and proved. Moreover, new type Hypergroups groups and are compared to hyper groups and groups. New type Hyper groups are shown to have a more general structure according to Hyper groups and groups. Also, new type SuperHyper groups are defined, corresponding basic properties and examples for new type SuperHyper are given and proved. Furthermore, we defined neutro-new type SuperHyper groups.
In this paper, we have investigated neutrosophic soft expert multisets (NSEMs) in detail. The concept of NSEMs is introduced. Several operations have been defined for them and their important algebraic properties are studied. Finally, we define a NSEMs aggregation operator to construct an algorithm for a NSEM decision-making method that allows for a more efficient decision-making process.